J. Appl. Math. & Informatics Vol. 27(2009), No. 3 - 4, pp. 621 - 638
Website: http://www.kcam.biz

ILL- VERSUS WELL-POSED SINGULAR LINEAR SYSTEMS:
SCOPE OF RANDOMIZED ALGORITHMS

S.K. SEN*, RAVI P. AGARWAL, AND GHOLAM ALI SHAYKHIAN

ABSTRACT. The linear system Az = b will have (i) no solution, (ii) only
one non-trivial (trivial) solution, or (iii) infinity of solutions. Our focus
will be on cases (ii) and (iii). The mathematical models of many real-
world problems give rise to (a) ill-conditioned linear systems, (b) singular
linear systems (A is singular with all its linearly independent rows are suffi-
ciently linearly independent), or (c) ill-conditioned singular linear systems
(A is singular with some or all of its strictly linearly independent rows are
near-linearly dependent). This article highlights the scope and need of a
randomized algorithm for ill-conditioned/singular systems when a reason-
ably narrow domain of a solution vector is specified. Further, it stresses
that with the increasing computing power, the importance of randomized
algorithms is also increasing. It also points out that, for many optimization
linear /nonlinear problems, randomized algorithms are increasingly domi-
nating the deterministic approaches and, for some problems such as the
traveling salesman problem, randomized algorithms are the only alterna-
tives.

AMS Mathematics Subject Classification: 15A06, 15A09, 65F05, 65F22
Keywords and phrases : Ill-conditioned singular linear system, near-linearly
dependent rows, pseudo-inverse, randomized algorithm, specified domain.

1. Introduction

Let the consistent linear system be Az = b, where A is an mazn numerically
known matrix and b is an mxl numerically known vector. The system will be
considered ill-conditioned if two or more rows of A are nearly linearly depen-
dent. If all those rows of A which are sufficiently linearly independent while
its other rows (one or more) are perfectly linearly dependent, then A will be
considered well-conditioned but singular. This second case does not pose nu-
merical instability while the first one may indeed induce considerable numerical

Received April 11, 2008. Accepted October 26, 2008. *Corresponding author.
© 2009 Korean SIGCAM and KSCAM .

621

622 S.K. Sen et al.

error in computation. We will demonstrate this fact while considering numer-
ical examples in section 2. Several physically concise algorithms have been re-
cently developed [1-3]. All these algorithms are deterministic. However, some
are iterative while others are non-iterative. Instead of these algorithms, we will
demonstrate through the popular Matlab command pinv that an exactly singular
linear system is not ill-conditioned as long as the system does not have near-
linearly dependent rows. In fact, if a perfectly singular system has all its linearly
independent rows sufficiently linearly independent then the singular system is
well-posed /well-conditioned. No numerical instability is faced while solving the
system. There are many possible randomized algorithms and random sequence
generators mainly meant for optimization [4-39]. Most of these algorithms can
be employed to solve the much simpler (rather relaxed) non-optimization linear
problems. In section 2, we will discuss/demonstrate, for a specified precision,
the important difference of well-posed singular systems and ill-posed singular
systems with respect to the pseudo (Moore-Penrose or, equivalently, minimum
norm least-squares) inverse with the help of simple numerical examples. In sec-
tion 3, we will present a straightforward randomized algorithm for solving a
singular well-conditioned linear system, a singular ill-conditioned linear system,
as well as a near-singular (and strictly non-singular) linear system when a narrow
bound for the solution vector is specified. We will stress in this section that de-
terministic algorithms, specifically non-iterative ones, fail to produce the desired
solution vector. Section 4 is an exposition of the increasing importance of ran-
domized algorithms with increasing computing power while section 5 comprises
conclusions.

2. Ill- vesrus well-posed singular systems

It is well-known that for a singular consistent system Ax = b, true inverse of A
does not exist and hence no unique solution is possible. However, the minimum
norm least-squares solution of the system Az = b does always exist so that
Hz}|= minimum and also ||Az — b|| = minimum (=0 for consistent system but
> 0 for inconsistent system). Is this ever existent solution free from numerical
instability? The answer is "no” if the singular system Az = b is ill-conditioned.
That is, some of the rows of A are near-linearly dependent. The term ”near-
linearly” is precision (word length of the computer) dependent and is viewed
based on our accuracy requirement/specification. Thus in a given context, we
may compare any two systems ranking one more ill-posed than the other. In
fact, just computing a generalized inverse (g-inverse) A~ or the minimum norm
least-squares (mt-) inverse A* (also called the Moore-Penrose inverse or, simply,
the pseudo-inverse) which always exists for both ill-posed singular matrices as
well as and well-posed singular matrices will introduce considerable error in
the solution vector £ = A~b or x = ATb if the singular (consistent) system is
ill-posed. Otherwise, i.e., if the singular system is well-posed, such error will
not be introduced in the solution vector. We like to stress the fact that not
all consistent singular systems are the same. Or, equivalently, not all singular

Ill- versus well-posed singular linear systems 623

matrices are the same with respect to the mt-inverse or a g-inverse. An ill-posed
singular matrix will have more error in its mt-inverse while a well-posed singular
matrix will have less or no error in its mt-inverse within the limit of the precision
of the computer/software used. Such a distinction between an ill-posed and a
well-posed singular matrix/system is necessary when we talk about numerical
sensitivity /instability. For, example, if the exact singular matrix or, equivalently,
perfectly well-posed singular matrix A is

1 2
a=[3 4]

then Matlab outputs its mt-inverse as

A+ _ [004 008
~ 1008 0.16

which is exact. It can be easily verified that
AATA = A ATAAT = At (AAT) = AAT (AT A) = ATA

exactly. On the other hand, if we consider the almost exact (with respect to
precision) singular matrix, also called ill-posed singular matrix, B , where

1 2
B_[2 4—10—5]’
the exact mt-inverse Bt will be

Bt — —399999 4200000
T 1 4200000 —100000 ;-

Observe that the exact BT is the exact B! since the almost exact singular
matrix B is strictly non-singular.
Matlab outputs its mt-inverse as

Bt — —399999.0000493783 +200000.0000246893
™ 1 4200000.0000246892 —100000.0000123447 |-

which is evidently in error. Similar errors will be introduced in higher order
singular systems whose two or more rows are near-linearly dependent. If we now
consider the exactly singular (symmetric) matrix A of order 3, where

1 2 3
A=12 4 6|,
3 69
then Matlab produces the minimum-norm least-squares (mt-) inverse A*, where

0.00510204081632653 0.0102040816326531 0.0153061224489796
At = | 0.0102040816326531 0.0204081632653061 0.03061224489799592
0.0153061224489796 0.0306122448979592 0.0459183673469388

624 S.K. Sen et al.

The consequent relation AA*T A = A can be seen to be exactly satisfied in Mat-
lab up to at least 14 significant digits implying excellent numerical stability
(practically no error introduced). If the matrix B is

1 2 3
B=1]2 4-10% 6|,
3 6 9

then
1.999999998217689 —0.307690768969812 —0.461536153426023
Bt =10%| —9.999909999677787 1.538461538478187 2.307692307573808
6.000000000379296 —0.923072307790393 —1.384608461599505

The consequent relation BBYB = B can be seen to be satisfied only up to
10 decimal places implying reduced numerical stability (more error introduced).
We demonstrate this sensitivity by taking the following simple numerical linear
systems and considering the popular Matlab command pinv.

Example 1. Let the given consistent strictly nonsingular system be Az = b,

where
1 2 3
A=[2 4-10~P]’ b=[6-10“”}’ (1)

p being a finite positive integer. It can be seen that the exact solution of the
system is = [11]* where ¢t denotes the transpose. If p = 14, then the system
may be termed near-singular when the precision used is 15 digits. The standard
precision with which Matlab works is 15 significant digits. The Matlab command
inv in the ordered set of commands

p=14; A=[1 2;2 4-10"-pl;b=[3 6-10"-p]’; x=inv(A)*b

displays exact solution as x = inv(A4) *b=[1 1]* for 1 <p < 14.

However, for p > 15, Matlab inv treats the system as ill-conditioned with
respect to the Matlab precision 15 digits with RCOND = 2.467162e-017. The
consequent solution vector displayed is z = [2 1] which is, as expected, unac-
ceptably incorrect. If we now use the pseudo-inverse Matlab command pinv in
the ordered set of commands
p=15,4=[1 2;2 4-10"-pl;b=[3 6-10"-p]’;x=pinv(A)+*b,nx=norm(x)
and successively reducing p in the foregoing commands, we then get the minimum-
norm least-squares solution z as in Table 1. In Table 1, the right-most column
is the comment on how pinv has treated the system (1) considering correct up
to 4 decimal places. The notation ||zj| denotes the Euclidean norm of the col-
umn vector z. The foregoing system (1) has been an ill-conditioned (strictly)
non-singular system. We now consider the following ill-conditioned consistent
singular system Ax = b, where

1 2 3 3
A=|2 4-107" 6|, b=| 12—-10"7 (2)
3 6 9 18

Ill- versus well-posed singular linear systems 625

Table 1. Solution vector x for different values of pin the strictly non-
singular system (1) using pinv

p X 2] System treated as

15 [6 17 13416 singulm'

14 [6+2X10ls 17 13416 singular

13 [0.9688 1.0078] 1.3979 Near-singular

12 [1.0039 0.9980] 1.4156 Near-singula.r

11 [1 0.99995] 14141 Not so near-singular
10 T 141422 Non-singular

The Matlab inv command will not work since the matrix A is singular. However,
the Matlab pinv will always work for any matrix A. If we remove ”—1077 ”
throughout in system (2), then the matrix A is singular well-posed and is of
rank 1. There are infinity of solutions. The (unique) minimum-norm least-
squares solution is z = [.4286 .8571 1.2857]* (correct up to 4 decimal places) and
the Euclidean norm of z is ||z|| = 1.6036 (correct up to 4 places). The solution is
absolutely correct up to 4 places and thus excellent implying that the system (2)
without ” —107P” is singular well-posed. Now we take different positive integer
values of p and demonstrate in Table 2 the ill-/well-posed behavior of the system
(2). Whether the system is ill-posed or not depends on the precision used. The
more ill-posed the system is, the more are the errors introduced.

Table 2. Solution vector x for different values of p in the singular
system (2) using pinv (result retained correct up to 4 decimal places)

P x | x ||, rank(A) | Singular system treated as

151 [4286 8571 1.2857]| 1.6036,1 Very ill-posed as if“~ 1077
is absent

14\ [4375 1 1375) 1.7556,2 Ti-posed

314023 1 12031} 1.6154,2 Til-posed

12 114023 1 1.2031F 1.6114,2 still ill-posed

174 9998 12002 | 16125.2 Somewhat ill-posed

10 [.4 1 1,2]' 1.6124,2 Well-posed (up to 4 places)

Failure of pinv to get a solution in a specified domain A singular consistent
system will have always infinity of solutions. Out of these solutions, there will
be one and only one solution called the minimum-norm least-squares solution
which the Matlab command pinv computes using the command x = pinv(A) *
b, b # 0 (null column vector). For such a system, we may want to obtain
a solution in a specified domain since such a solution could be required in a

626 S.K. Sen et al.

real world situation. This cannot be achieved using the pinv command. The
alternative is using a randomized algorithm preferably in a specified narrow
domain. Such an algorithm is polynomial-time unlike a deterministic method
such as the n-dimensional k-section, where n is the dimension of the solution
vector z . Such a deterministic method is exponential-time. If the i -th element
of x is x; € [, 0] © = 1,2,...,n and if the interval [y, 5] is divided into k
equal subintervals then we need to investigate k" = e™°9* subdomains for the
required solution. This implies that the solution of a moderate size linear system
could be intractable even in the fastest available computer today (2007). If we
take k = 2 (bisection), » = 50, then the number of domains to be considered in
the computation will be 0192 = 1.12589990684263e+015. If for each domain,
we require one microsecond { 107° second) of computation for the system then
we will be requiring 35.7020518405195 years to get the solution in the specified
domain. Thus a randomized algorithm is an immediate choice for such a system
with specified domain for the solution.

3. Randomized algorithm for Az = b for specified bounds on z

Consider the consistent ill-posed singular system (2). Let p = 10 . Then the
following self-explanatory Matlab program will be
max= 1000000,p=10,n=3; A=[1 2 3;2 4-10"-p 6;3 6 9],
b=[6 12-10~-p 18]°,
for j=1:max,
x1=[.9 .9 .9]’; xh={1.1 1.1 1.1]7%;
x=x1+0.2*[rand rand rand]’;
abserr=norm{A*x-b) ;
if abserr<0.5%10"-6, x, abserr, end;
end;
The solution that we get is

x=[0.95261928012747 1.07761579324057 0.964049704922958]’
and the absolute error is abserr=6.9683230023373%-008.

Observe that since the system is singular (consistent), we still have infinity of
solutions in the specified domain

9 T 1.1
9| <z | <| 11], (3)
9 X3 1.1

although we know that one of the exact solutions is z = [1 1 1]* . Another exact
solution is z = [0.7 1 1.1]* which is, however, just outside the specified domain.
Yet another exact solution inside the specified domain is z = [0.97 1 1.01]* .
The randomized algorithm is always polynomial-time since we do not relate the
number of random numbers generated with the order n of the matrix, specifically
in any non-polynomial form. Further, the algorithm has computed an approxi-
mate solution usable in a real world environment in the specified domain. The

1ll- versus well-posed singular linear systems 627

uniqueness of the solution in the desired domain depends on whether the system
is full-rank or not. We now consider the strictly non-singular system (1) which
may be called near-singular ill-posed system with respect to the inverse of A
for large positive finite integral values of p for a specified finite precision. For
a sufficiently large precision compared to the value of p , the system may not
be considered near-singular. In system (1), if we take p = 8 and allow absolute
error to be less than 0.5107° then the following self-explanatory Matlab program

max= 1000000,p=8,n=2;A=[1 2;2 4-10"-p],b=[3 6-10"-p]’,
for j=1:max,
x1=[.9 .9]7;
x=x1+0.2*[rand rand] ’;
abserr=norm(A*x-b) ;
if abserr<0.5*%107-6, x, abserr, end;
end;

gives

x = [1.02023212404495 0.989883932303654]°
and abserr = 2.52838866020121e-008

while the exact solution is z = [1 1]* . This approximate solution is within the

specified domain, viz.,
.9 il 1.1
HEEE @

and reasonably good for a real world implementation as seen from the absolute
error value. However, if one observes carefully, then one can discover that this
strictly mathematically non-singular system has been treated as a singular sys-
tem. This is typical of ill-posed (near-singular) systems. In a sufficiently large
precision (much higher than 15 digits), the foregoing system (1) with p = 8
will be treated as well-posed and then the resulting numerical solution will be
z = [1 1]t for all practical purposes. If we now take p = 4 and allow the
absoluteerror < 0.5 x 1075 then out of several solutions, we have the following
solution

X = [1.0046787831405 0.997660031115833]°,
abserr = 2.37483988449008e-006,

which is acceptable in real-world implementation. In the later case, the random-
ized algorithm has treated the system as near-singular (strictly not singular).
We like to stress the fact that a singular consistent linear system will have in-
finity of solutions, where a randomized algorithm becomes handy if a solution is
desired in a specified domain. The usual non-iterative deterministic algorithms
will not be straightway applicable as shown through the foregoing examples in
this section.

628 S.K. Sen et al

4. Increasing importance of randomized algorithms with computing
power

Gradual increase in importance of genetic/randomized algorithms over deter-
ministic ones A numerical solution for the real world implementation is a must.
An analytical (mathematical) solution is of no use to an engineer until it is
converted into numbers. The most important tool for a numerical solution is
mainly a digital computer. A digital computer may be used to practically any
finite precision. Every 18 months the CPU (central processing unit) speed is
doubling, every 12 months band width is doubling while every 9 months hard
disk space is doubling. Consequently, many problems designed/developed earlier
which could not be solved due to the limitation of computing power are now be-
ing solved. We present below briefly an account of past computing ages and the
gradual increase in innovation and importance of randomized algorithms such as
the genetic and ant system algorithms over deterministic ones such as the gra-
dient methods. We like to stress the fact that the computing speed, the storage
space, and the band width are all together needed to be improved in order to
improve the computing power. That is, just increasing the speed of computing
without increasing the memory and band width could result in an operational
bottle-neck since a high speed CPU will be bogged down due to too many as
well as too slow data retrieval and storage operations if the memory size as well
as band width are not commensurable, i.e., if these are not comparatively large.
As stated earlier, both CPU and memory space are progressively improving,.

Pre-high speed computing age (1946-1964) This age consisting of nineteen
years may be divided into three parts — early first generation {(vacuum tubes)
(1946-53), late first generation (1953-59) and the second generation (transistors)
computers (1959-64) [40]. The executable memory cycle times were 0.04-40 ms
(milliseconds) during the early first generation, 0.01-0.02 ms during the late first
generation, and 0.002-0.01 ms during the second generation. An early first gen-
eration computer and a late first generation computer were capable of executing
about 10® and 5 x 10* operations per second on an average, respectively. Hardly
a negligible fraction (compared to modern computers) of practical computing ex-
isted during 1946-53. Randomized algorithms were not perceived during these
years as a viable alternative to deterministic ones, nor much innovation did
exist for these algorithms. Also these needed apparently large amount of com-
putation compared to that required by a deterministic one. In reality, however,
all randomized algorithms are polynomial-time, i.e., fast. Specifically genetic
algorithms (global search techniques) as well as ant system approaches were
practically nonexistent during 1946-64. We were more comfortable psychologi-
cally with deterministic algorithms than with nondeterministic ones. In reality
we did not have much confidence about the result which remains variant at each
run unlike the deterministic ones. This is because the seed to generate required
random sequences for a randomized algorithm differs from one run to another

Ill- versus well-posed singular linear systems 629

— a situation much unlike any deterministic algorithm such as the Gauss re-
duction method with partial pivoting. A deterministic algorithm will always
produce exactly the same output on the same computer, no matter how many
times the program (algorithm) is run. Thus Gauss reduction type and similar
other algorithms were the only practical means to solve a linear system.

High-speed computing age (1964-1975) This age consisting of the eleven year
period may be divided into early third generation (monolithic (medium scale)
integrated circuits 1964-69) and late third generation (monolithic (large scale)
integrated circuits 1969-75). The executable memory cycle time was 0.5 — 2us
(1ps= 1078 sec) during the early third generation while it was 0.02 — 1us during
the late third generation. An early third generation and a late third genera-
tion computer could execute 10° (one million) and 20 x 108 (twenty million)
operations per second on an average, respectively. The enhanced speed permit-
ted the scientists, engineers, and researchers to explore more compute bound
problems which were hitherto discouraged due to processor speed and memory
capacity/speed limitations. Also, they designed and developed newer algorithms
suited to computations for real world problems. Randomized algorithms such
as the evolutionary approaches specifically genetic algorithms started gaining
acceptance and momentum increasingly and are being considered as possible
candidates for practical computations along with the deterministic ones. But
these were yet to become sufficiently appealing for extensive computation in lieu
of deterministic ones and were yet to be widely accepted means of linear system
solver.

Super-high-speed computing age (1975-1990) The term supercomputer has a
time-dependant informal definition since today’s supercomputer tends to become
tomorrow’s normal computer. Further, there is no generally accepted definition
for fourth generation (very large scale monolithic integrated (VLSI) circuits and
possibly with vector processors) as well as fifth generation (implementing artifi-
cial intelligence through usually a software simulation of the natural intelligence)
computers. It is thus not meaningful to extend the concept of computer gen-
eration beyond the third generation. We would consider computers introduced
since 1975 onwards as modern computers and refer to the third generation com-
puters as those of the past. However, for the purpose of speed relative to that
of the past computers, a modern computer was loosely termed as a supercom-
puter if its speed exceeds 100 million (floating-point) operations per second (one
hundred megaflops). Such a technological improvement gave a significant im-
petus to researchers to explore much more compute bound algorithms such as
the randomized ones and perceive the scope/utility of these algorithms over the
deterministic algorithms such as the deterministic linear system solver.

Ultra-high-speed computing age (1990-onwards) Compared to the foregoing
speeds, it would not be unreasonable to term a processing speed exceeding 1000
million (i.e., one billion) flops as an ultra-high speed. The ultra-high frequency
band is generally accepted as 3000-300 megahertz. Electrical signals propagate

630 S.K. Sen et al.

no faster than the speed of light. A random access memory (RAM), i.e., the
executable memory used to one gigahertz (10° cycles per second) will deliver
information at 1070 sec (i.e., 0.1 nanosecond) speed if its diameter is 3 cen-
timeters since in 10719 seconds, light travels 3 centimeters [41]. It is the physics,
rather than the technology and the architecture, that sets up the limits/barriers
to increase the computational speed arbitrarily. The physical barriers are the (i)
speed of light, (i1} the thermal efficiency, and the quantum barriers. Per mass of
hydrogen atom (1.67 x 10724 gm), maximum 2.505 x 1022 bits/sec can be theo-
retically processed/transmitted. Since the number of protons in the universe is
estimated as 1072, no more than 7.9 x 10103 bits per year can be processed, if
the whole universe is dedicated to information processing [41]. The ultra-high
speeds along with ultra-large memory and ultra-large band-width have allowed
the researchers to encroach into the realm of hitherto unexplored NP-hard prob-
lems such as a large traveling salesman problem (TSP) of immense practical
importance in a meaningful non-deterministic (randomized) way. While a deter-
ministic algorithm for the TSP is combinatorial/exponential-time needing the
computation for {(n — 1)! paths to obtain the exact minimum cost path, a ge-
netic (heuristic) approach which is always polynomial-time would need relatively
very little computation to provide us a low cost path, which though may/may
not be the exact minimum cost path, that is accepted and used by the trav-
eling salesman. There is absolutely no polynomial-time way to verify whether
the computed result (path) is truly the globally minimal path. Possibly in fu-
ture a better (lower cost) path will be found by this or some other algorithm
with/without increased computing power. We will still not be able to check
whether the lower cost path is a globally minimal cost path. The purpose is to
impress on the fact that randomized algorithms will be the only tool to explore
the vast world of NP-hard problems [41, 42]. The deterministic algorithms will
have no entry to this world as these could take billions of centuries to produce
the required output. Even the estimated age of the universe is a numerical zero
compared to this computation time. In the present context, however, we are
not involved in NP-hard problem. Qur problem, viz., the linear system solving,
specifically ill-conditioned singular linear system solving, is much simpler and
polynomial-time. We have attempted here too the distinct scope of a random-
ized algorithm. Even if the employed algorithm is an exponential function of n ,
the order of the matrix A , then it will be an exponential algorithm. So long as
the given linear system is not considered large, such an exponential algorithm
will produce the required acceptable solution in a tolerable time frame because
of teraflops speed available to us [43). When the algorithm is not an exponential
function of n , it will be a polynomial-time algorithm and hence fast. Observe
that there are numerous not-so-large ill-posed systems in a real-world environ-
ment [44, 45]. Even in such polynomial-time problems, a genetic algorithm/any
evolutionary approach appears to be competitive and by nature is simple to
implement rather readily as shown in the physically concise Matlab codes.

Ill- versus well-posed singular linear systems 631

World’s fastest computers as in November 2007 Supercomputers are typically
used for highly compute intensive problems such as those in quantum physics,
molecular modeling, weather forecasting and climate research, and physical sim-
ulation including that of nuclear tests. While the US is the leading consumer
of ultra-high speed computing systems with 284 of the 500 systems, Europe
follows with 149 systems and Asia has 58 systems. In Asia, Japan leads with
20 systems, Taiwan has 11, China 10 and India 9 [43]. The No. 1 position
goes to the BlueGene/L System, a joint development of IBM and the US De-
partment of Energy’s (DOE) National Nuclear Security Administration (NNSA)
and installed at DOE’s Lawrence Livermore National Laboratory in California.
Although BlueGene/L has been in the No. 1 position since November 2004, the
current system is much faster at 478.2 teraflops compared to 280.6 teraflops six
months ago before its upgrade. BlueGene/P system installed in Germany at the
Forschungszentrum Juelich (FZJ) is in the No. 2 position with the processing
speed of 167.3 teraflops while the No. 3 system is at the New Mexico Computing
Applications Center (NMCAC) in Rio Rancho in New Maxico, having the speed
of 126.9 teraflops. The No. 4 position goes to the Tata supercomputer called
EKA (meaning ”one” in Sanskrit) situated at the Computational Research Lab-
oratory (CRL) in Pune, India. It is a Hewlett-Packard Platform 3000 BL 460c
system integrated with CRL’s own innovative routing technology to achieve a
speed of 117.9 teraflops. CRL built the supercomputer facility using dense data
center layout and novel network routing and parallel processing library tech-
nologies developed by its scientists. The second ranked supercomputer in India,
rated 58th in the Top500 list, is at the Indian Institute of Science, Bangalore.
India has been making steady progress in the field of supercomputing from the
time it first bought two supercomputers from the US pioneer Cray Research in
1988. US strictures on the scope of its use and its demand for intrusive monitor-
ing and compliance led India to devise its own supercomputers using clusters of
multiprocessors. The foregoing information under the heading ”World’s fastest
computers as in November 2007” follows primarily from [43].

5. Conclusions

Ill-posed polynomial root-finding versus ill-posed singular system Multiple ze-
ros of a polynomial can be very accurately/exactly computed using a fixed-point
iterative scheme such as the deflated Newton method [46]. Thus multiple poly-
nomial root-finding problem is well-conditioned in the sense that the roots can
be very accurately computed by some numerical method. However, this is not
so with the polynomial root-cluster (closely spaced roots) problem. Any numer-
ical method devised/developed so far and possibly to be developed in future for
a specified precision can be easily shown to fare badly by appropriately con-
structing a polynomial with sufficiently closely spaced roots/zeros. Thus, for a
specified precision, the polynomial root-cluster problem is ill-conditioned with
respect to computing the polynomial’s zeros. Let a polynomial have the re-
peated zeros 5, 5, 5, 5, and 5. The deflated Newton method will produce the

632 S.K. Sen et al.

zeros 5,5,5,5, and 5 correct up to 14 decimal places when Matlab (15 digit
precision) is used. If, on the other hand, the polynomial has zero-clusters 5.01,
5.02, 5.03, 5.04, and 5.05 then any method will fare badly introducing significant
errors in the zeros. The extent of such errors, however, depends on the precision
employed. Consider the Matlab commands

>>format long g; A=[5.01 5.02 5.03 5.04 5.05]; c=poly(A)

to construct the polynomial ¢;2® + cox? + 32 + cax? + 52 + cg = 0 where ¢; =
1, g = —25.15, ¢z = 253.0085, ¢4 = —1272.627725, ¢5 = 3200.63975274, ¢ =
—3219.818138712. The Matlab command >> r = roots(c) then produces the five
roots 5.05007152279192, 5.03970336092616, 5.03043294325773, 5.0197197217852,
and 5.01007245123899 which are significantly in error and are different from the
actual root-clusters 5.01, 5.02, 5.03, 5.04, and 5.05.

Exact singular linear system problem like multiple polynomial root-finding
problem is well-conditioned. Singular linear system with nearly linearly depen-
dent rows problem, on the other hand, like the polynomial root cluster problem
(which might/might not have some repeated roots) is ill-posed. In the later
cases, errors will be introduced in computation.

Deterministic iterative versus non-iterative and randomized algorithms While
deterministic non-iterative methods usually have no regards for the specified
(n -dimensional) domain, the deterministic iterative methods do have. The
different kinds of generalized inverses of the matrix A will produce different
solutions for the system Az = b . These inverses neither need the knowledge
of the required domain nor can be readily modified to incorporate the desired
domain. Most often these inverses will produce a solution outside the domain.
In real world environment, such a solution could be of no use. Under these
circumstances, a randomized algorithm is desirable in more than one ways. It
will produce a solution inside the domain if there is a solution and if sufficiently
large number of random numbers each of, say, fifteen digits are used. It is also
simple and straightforward. In view of the ultra-high computing power (over
one billion floating point operations per second), the randomized algorithms are
more attractive now than ever. These are polynomial-time, i.e., fast and in most
real-world problems, we do not face any meaningful computational complexity
issue.

A typical example to focus on near-singularity as the real problem not the singu-
larity

{(a) Non-homogeneous linear system Consider the strictly nonsingular linear
system Ax =b , where

12 3 6
A=|4 5 6 L b= 15 ,
7 8 9+.5x10°F 24+ .5x 107*

and £ = a finite positive integer. The relative errors in the solution vector = by
four different methods, viz., Matlab inv, Matlab pinv, Optimal iterative scheme

Ill- versus well-posed singular linear systems

633

(OIS-quadratic) [2], Matlab inversion-free (Gauss elimination) are given in Table

3.

Table 3 Relative error in the computed solution vector x

k Matlab inv Matlab pinv
4 1.0082x107° 3.6351x10™
5 0 1.2023x10°
6 9.6187x10” 8.6032x107°
7 1.4189x107 1.2876x1077
8 5.5060x107 2.0602x107°

9 4.4048x10° 1.3214x10°°
10 7.8796x10° 1.4529x10™*
11 0 1.3811x107°
12 1.0086x102 2.0172x107
13 8.8388x107 1.9357x107"
14 0 2.9036x107"

Given the m x n numerical matrix A , the quadratic OIS [2] is as follows.

Step 1. Compute A!/tr(AAY).

OIS pinv
1.5570x10°°
3.8565x107
3.2120x10°
11.7624
1589.90
445919.5
29983433
1.9689x107"
1.9299x107
3.3650x107"
1.2094 107"

Matlab inv-free
5.0243x107"!
5.0243%x107°
8.1645x10°
5.0243%107®
5.0243x107
6.2804 %1077
9.4208x10°°
5.0243x107*
3.7780x107
6.3418x107®
5.2378x1072

Note One may compute tr(A*A) instead of tr(AA") as both are same. How-
ever, if m > n then compute preferably ¢r(A*A) since the dimension of A*A will
be smaller. Observe that the two matrices AA?, A’A are both symmetric and
diagonal elements are all nonnegative (A has real elements).

Step 2. Compute Xjy1 = Xp(2I — AXy) for k = 0,1,2,..., till || Xgy1 —

Xk:”/HXk—H <0.5 x 1010,

As k increases, the singularity of A is more pronounced, the matrix A is
always strictly non-singular though. The exact solution vector e is e = {1 1 1]*.
Observe the error phenomenon! The relative error is defined as ||le — z||/|le]|,
where ||y|| = Euclidean norm of the vector y . The graphical representation of
the relative error in the solution vector computed using Matlab (pseudoinverse)
pinv and Optimal iterative scheme (OIS-quadratic) pinv [2] is shown in Fig. 1.

The graph (Fig. 1) has been obtained using the Matlab script file

errormatlabpinvoispinv consisting of the program

e=[3.6351*%10"-10 1.2023%10"-9 8.6032*10"-9 1.2876*10"-7

2.0602*10°-6 1.3214*10°-5 1.4529%10°-4 1.3811%107-2
2.0172%10°-2 1.9357%10°-15 2.9036%10°-15]’;

el=[1.5570*10"~-5 3.8565%107-3 3.2120%1070 11.7624
1589.90 445919.5 29983433 1.9689*107-13
1.9299*10°-14 3.3650%10°-15 1.2094%10°-15]’;

k=[4 56 78 9 10 11 12 13 14]°;

plot(k,log(e), k, log(el),’--"); xlabel(’k’);

ylabel(’natural log of errors’);

title(’Error pattern in Matlab pinv and that in

634 S.K. Sen et al.

Eror pattern in Matiab pinv and that in OIS pinv

20 T — —-

-\ Matlab pinv
- \ - OIS pinv

101 ~

- L L P
4 5 (-] 7 8 9 10 1" 12 13 14
k

Fig. 1 Relative error pattern in the solution vector using (i) Matlab pinv and
(ii) OIS pinv. As k increases the degree of singularity also increases. Both the
curves are similar in nature and demonstrate that when the degree of
singularity is low, i.e., when the linear system is close to a non-singular
system as well as when it is close to an exactly singular system with respect to
the precision, relative errors are very low or negligible. On the other hand, the
relative errors are high in the middle, i.e., when the system is near-singular
with respect to the precision.

0IS pinv’);
legend(’Matlab pinv’,’0IS pinv’);

The Matlab (true inverse) inv as well as Matlab (Gauss elimination) inv-
free both produce monotonically increasing error as the singularity increases. It
can be seen from Table 3 that the Matlab inv as well as Matlab inv-free perform
better than Matlab pinv in the near singular region. So, for near singular system
we recommend the use of Matlab inv/ inv-free rather than pinv. When the degree
of singularity is too high with respect to the precision or the system is singular,
i.e. two or more rows of the coefficient matrix A are linearly dependent, we
recommend the use of Matlab pinv or OIS pinv.

In the OIS, the matrix X1 upon satisfaction of the foregoing inequality will
be At correct up to 10 significant digits. Xx4; will be a more accurate right-
inverse of A rather than its left-inverse, when A is near-singular. The scheme
(OIS) cannot compute only the left-inverse X such that only X A = I while other
relations required for the pseudo-inverse are not satisfied for a near-singular A.
The relation for near-singular A , viz., AX;11 = I # Xy+1A within the stan-
dard precision (14 digits) is interesting. If the singularity is more pronounced,
then the inequality will also be much more pronounced. Further, while the two
relations AXg 1A = A, (AXp41)! = AXge1, where Xy is the right-inverse
of A for a near-singular A subject to the precision of computation are satis-
fied, the other two relations Xp11AXg11 = Xpp1, (Xp4tA) = Xpp1 A will
not be satisfied. However, for exact singular/non-square rectangular matrices
with full row-rank, the inverse Xj.; will reasonably (within the precision of

1ll- versus well-posed singular linear systems 635

the computer) satisfy all the four relations in the foregoing optimal iterative
scheme (OIS). Hence this X1 will be the minimum-norm least-squares inverse
of non-singular/rectangular A with full row rank.

(b) Eigensystem (Homogeneous linear system) Consider the computation of
numerical eigenvalues and eigenvectors of the matrix.

) 3 2 4
-7 10 2 8
-12 8 -1 14
-14 21 3 26

A:

Using the Matlab command >> eig(A), we get the four distinct eigenvalues as

31.3535186425859, 8.29665538126231,
0.349825976151775, 1.84619639813168e-014

If we now take the first eigenvalue A\; = 31.3535 (correct up to 4 places) then
in the homogeneous system (A— X T)z1 = 0, where [is the unit matrix of order
4 and z1 is a corresponding eigenvector, the system will produce the eigenvector
(non-normalized)

x1 = [-3.63797880709171e-012 -7.27595761418343e-012
-7.27595761418343e-011 -2.91038304567337e~011]"

which is completely wrong. The matrix A — A;I which should be numeri-

cally singular has been treated as numerically non-singular. Its determinant

is —0.417835384572988 which is significantly different from the numerical zero

[41]. The foregoing eigenvector was obtained using the Matlab commands

>>lam1=31.3535; I=eye(4); B=A-lamix*I; z=[1 1 1 1]°;
x1=(I-pinv(B)*B)*z Yz=arbitrary col. vector

However, if we now take the first eigenvalue A\ = 31.3535186425859, then we
get the numerically correct eigenvector (non-normalized)

x1 = [0.329995055166732 0.504562453415674
0.640768907286834 1.47532641586924]°

which is very much acceptable and usable in a real-world application. The
foregoing vector was obtained by the foregoing Matlab commands with only
replacement of laml = 31.3535 by laml = 31.3535186425859. This is just to
demonstrate that a relative error of 0.00006 per cent in the eigenvalue can be
fatal even for such a small eigensystem.

The exact singularity or too high a degree of singularity (with respect to the
precision of computation) is never a problem so far as the quality of the solution
is concerned; that is, the problem is NOT ill-conditioned with respect to the
computation of the solution vector . On the other hand, the problem is ILL-
CONDITIONED with respect to the computation of the solution vector when
it is NEAR-SINGULAR or it has two or more near-linearly dependent rows
(with respect to the precision of the computer). The foregoing simple small
examples demonstrate precisely that. We are not proposing a best practical

636 S.K. Sen et al.

method to solve a large least-squares problem or a large linear system that
will excel all the methods so far existing. However, our subtle points must be
taken into account for devising any method/algorithm for large sparse/dense
system. Only the error-bounds will demonstrate how good the devised method
is. It may be stressed that there are numerous real-world problems in Physics
such as the forced oscillations and resonance [44] and in Operations Research
[45], whose mathematical models are linear systems including singular and near-
singular ones. The scope of computations using a randomized algorithm has
been explicitly discussed in section 4 stressing the fact that the ultra-high speed
(teraflop/s = 10'2 floating point operations per second) of current computers is
widely available and over 95 per cent of this computing power remains unutilized
(and hence is an waste) in the real-world environment. Further it must be
realized that a randomized algorithm is polynomial-time (implying fast) and
NOT exponential-time (implying slow). For, if it is made exponential-time then
it is useless in practice.

REFERENCES

1. S.K. Sen and S. Sen, Linear systems: relook, concise algorithms, and Matlab programs,
Academic Studies - National Journal of Jyoti Research Academy1(1) (2007), 1-8.

2. S.K. Sen and S.S. Prabhu, Optimal iterative schemes for computing Moore- Penrose matrix
inverse, Internat. J. Systems Sci. 8 (1976), 748-753.

3. E.A. Lord, V. Ch. Venkaiah, and S.K. Sen, A concise algorithm to solve under-/over-
determined linear systems, Simulation 54 (1990), 239-240.

4. M. Haahr, Introduction to randomness and random numbers,
http://www.random.org/essay.html 1999.

5. 5. Galanti and A. Jung, Low-discrepancy sequences: Monte Carlo simulation of option
prices, The Journal of Derivatives 5 (1997), 63-83.

6. T. Samanta, Random Number Generators: MC Integration and TSP-solving by Simu-
lated Annealing, Genetic and Ant System Approaches, Ph.D. thesis, Florida Institute of
Technology (Department of Mathematical Sciences), Melbourne, Florida, USA 2006.

7. A. Reese, Quasi- Versus Pseudo-random Numbers with Applications to Nonlinear Op-
timization, Ph.D. thesis, Florida Institute of Technology (Department of Mathematical
Sciences), Melbourne, Florida, USA 2006.

8. 8.K. Sen, T. Samanta, and A. Reese, Quasi- versus pseudo-random generators: Discrep-
ancy, complezity and integration-error based comparison, International Journal of Inno-
vative Computing, Information and Control 2 3 (2006), 621-651.

9. J.H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating
multi dimensional integrals, Numerische Mathematik 2 (1960), 84-90.

10. I.M. Sobol, On the distribution of points in a cube and the approzimate evaluation of
integrals, U.8.S.R. Computational Mathematics and Mathematical Physics 7 (1967) 86-
112.

11. H. Faure, Discrepance de suites associees a un systeme de numeration (en dimension s),
Acta Arithmetica, XLZ (1982), 337-351.

12. H. Niederreiter, Low discrepancy and low dispersion sequences, Journal of Number Theory
30 (1988),51-70.

13. B.L. Fox, Algorithm 647: Implementation and relative efficiency of quasirandom sequence
generators, ACM Transactions on Mathematical Software 12 4 (1986), 362-376.

14

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

1li- versus well-posed singular linear systems 637

. P. Bratley, B.L. Fox, and H. Niederreiter, Algorithm 738: Programs to generate Nieder-
reiter’s low-discrepancy sequences, ACM Transactions on Mathematical Software 20 4
(1994), 494-495.

H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM,
Pennsylvania, 1992.

P.K. Sarkar and M.A. Prasad, A comparative study of pseudo and quasi random sequences
for the solution of integral equations, Journal of Computational Physics 68 (1987), 66-88.
P. Shirley, Discrepancy as a quality measure for simple distributions, Proceedings of Eu-
rographics 91 (1991), 183-193.

J. Struckmeier, Fast generation of low discrepancy sequences, Journal of Computational
and Applied Mathematics, 61 (1995), 29-41.

L. Kocis and W. Whiten, Computational investigations of low-discrepancy sequences,
ACM Transactions on Mathematical Software 23 2 (1997), 266-294.

S.G. Henderson, B.A. Chiera, and R.M. Cooke, Generating "dependent” quasi-random
numbers, Proceedings of the 32nd Conference on Winter Simulation, (2000), 527-536.

S. Haupt and R. Haupt, it Practical Genetic Algorithms, Wiley, New York, 1998.

M. Mascagni and A. Karaivanova, Matriz computations using quasirandom numbers,
Springer Verlag Lecture Notes in Computer Science, 552-559, 2000.

J. Banks, J. Carson, and B. Nelson, Discrete-event System Simulation (2nd edition),
Prentice-Hall, New Jersey, 1996.

T. Samanta and S.K. Sen, Pseudo- versus quasi-random generators in heuristics for trav-
eling salesman problem (2008), to appear.

M. Junger, G. Reinelt, and G. Renaldi, The traveling salesman problem, Operations Re-
search and Management Sciences 7 (1995),225-330.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, anf D.B. Shmoys, The Traveling Sales-
man Problem A Guided Tour of Combinatorial Optimization, Wiley, New York, 1985.
G. Reinelt, it The Traveling Salesman: Computational Solutions for TSP Applications,
Springer-Verlag, New York, 1994.

Georgia Tech TSP page, http://www.tsp.gatech.edu/.

W.L. Winston, Operations Research: Applications and Algorithms (4th Edition), Thom-
son, Belmont, California, 2004.

M. Dorigo, Optimization, Learning, and Natural Algorithms, Ph.D. thesis (in Italian),
Politecnico di Milano, Italy, 1992.

M. Dorigo, V. Maniezzo, and A. Colorni, The ant system: Optimization by a colony of
cooperating agents, IEEE Trans. On Systems, Man, and Cybernetics-Part B 26 1 (1996),
29-41.

L.M. Gambardella and M. Dorigo, Solving symmetric and asymmetric TSPs by ant
colonies. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC96,
Nagoya, Japan, 622-627, 1996.

H. Chi, M. Mascagni, and T. Warnock, On the optimal Halton sequence, Mathematics and
Computers in Simulation 70(2005), 9-21.

H. Niederreiter, Low-discrepancy and low dispersion sequences, Journal of Number Theory
30 (1988),51-70.

P. Bratley, B.L. Fox, and H. Niederreiter, Implementation and test of low-discrepancy
sequences, ACM Transections on Modeling and Computer Simulation 2 3 (1992}, 195-213.
V. Lakshmikantham, S.K. Sen, and T. Samanta, Comparing random number generators
using Monte Carlo integration, International Journal of Innovative Computing, Informa-
tion, and Control 1 2 (2005), 143-165.

D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms,
Addison-Wesley, Reading, MA, 2nd Edition, 1981.

S.K. Park and K.W. Miller, Random number generators: Good ones are hard to find,
Communications of the ACM 31 (1988), 1192-1201.

638

39.

40.

41.

42.

43.

44.

45.

46.

S5.K. Sen et al.

MP-TESTDATA - The TSPLIB Symmetric Traveling Salesman Problem Instances,
http://elib.zib.de/ pub/Packages/ mp-testdata/tsp/tsplib/tsp/ ,1995.

A. Ralston and E.DD. Reilly, Jr. eds., Encyclopedia of Computer Science and Engineering
(2nd ed.), Van Nostrand Reinhold, New York, 1983.

V. Lakshmikantham and S.K. Sen, Computational Error and Complezity in Science and
Engineering, Elsevier, Amsterdam, 2005.

E.V. Krishnamurthy and S.K. Sen it Introductory Theory of Computer Science, Affiliated
East-West Press, New Delhi, 2004.

Chidanand Rajghatta, The Times of India, TNN, India hosis world’s fourth fastest super-
computer, The Times of India Daily News Paper, reported on November 13, 2007 at 2143
hours Indian Standard Time from Washington.

B.Nobel and J.W. Daniel, Applied Linear Algebra (3rd ed), Prentice-Hall, New Jersey,
1998.

W.L. Winston, Operations Research: Applications and Algorithms (4th ed), Thomson,
Belmont, California, 2004.

E.V. Krishnamurthy and S.K. Sen, Numerical Algorithms: Computations in Science and
Engineering, Affiliated FEast-West Press, New Delhi, 2001.

S.K. Sen Syamal Kumar Sen received his Ph.D. degree in Computational Science from
1ISc, Bangalore. After serving the institute for over thirty-five years, he joined Florida
Tech, USA in January, 2004 as a professor. He has been earlier a professor in IISc and
other universities besides holding one-year visiting professorship (1995-96) and Fulbright
fellowship (1991) for senior teachers in Florida Tech. He is widely published, cited in
Marquis Whos Who and is the recipient of 2008 IEEE Canaveral Section Qutstanding
Recognition Award.

Department of Mathematical Sciences, Florida Institute of Technology, 150 West Univer-
sity Boulevard, Melbourne, FL, 32801-6975, United States
e-mail: sksen@fit.edu

Ravi P. Agarwal received his Ph.D. degree in Mathematics from IIT, Madras (Chennai).
After serving National University of Singapore (Singapore) for nearly two decades, he
joined Florida Tech, USA in January, 2002 as a professor. He has been earlier a professor
in several universities besides being a recipient of Humboldt-Foundation fellowship (1980-
82), Germany. He is one of the most published and most cited authors in the world and
an authority in differential equations and applications.

Department of Mathematical Sciences, Florida Institute of Technology, 150 West Univer-
sity Boulevard, Melbourne, FL 32901-6975, United States
e-mail: agarwal@fit. edu

Gholam Ali Shaykhian received his Ph.D. degree in Operations Research from Florida
Tech, USA. He is a Software Engineer with NASA at Kennedy Space Center. He has
been bestowed with several awards and recognitions from NASA including Space Flight
Awareness (SFA) Honoree, and Certificate of Appreciation. Ali currently serves as the
Program Chair of ASEE, Minorities in Engineering Division and Education Chair of IEEE.
He was a NASA Fellow, serving his fellowship at Bethune Cookman College from June
2003 to June 2005.

National Aeronautics and Space Administration (NASA), Engineering Directorate, NE-
C1, Kennedy Space Center, FL 32899, United States
ali.shaykhian@nasa.gov

