• 제목/요약/키워드: travel demand forecasting

Search Result 69, Processing Time 0.025 seconds

Relation between Highway Improvement and Induced Travel Demand, and Estimate the Demand Elasticity (A Seoul Metropolitan Area Case) (도로환경개선과 집합적 개념의 유발통행수요와의 관련성 규명 및 수요탄력성 추정(수도권을 중심으로))

  • Lee, Gyu-Jin;Choe, Gi-Ju;Sim, Sang-U;Kim, Sang-Su
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.4 s.90
    • /
    • pp.7-17
    • /
    • 2006
  • The purpose or this paper is to investigate the relationship between highway improvement and Induced Travel Demand(ITD) focusing on the Seoul metropolitan area data. In addition, authors tried to estimate basic unit of demand elasticity focusing on zone and trip purpose which can be applied for the ITD forecasting. The results are based on the 2002 Metropolitan Household Transportation Survey Data, where the demand elasticity (DE) is -0.582 in Seoul, -0.597 in Incheon and -0.559 in Gyounggi province, respectively. This study revealed part of the relationship between highway improvement and ITD for metropolitan region and provided the framework for yielding real estimated values by applying the concept of demand elasticity in terms of the relationship by using regional and long-term data. We expect that the basic unit of demand elasticity focusing on zone and trip purpose can be applied for the ITD forecasting to analyze the whole demand exactly The estimated DE's for age group and day of week can also be used for Proper transportation management and transport Policy making. Some limitations have also been discussed.

Correlation Analysis Between O/D Trips and Call Detail Record: A Case Study of Daegu Metropolitan Area (모바일 통신 자료와 O/D 통행량의 상관성 분석 - 대구광역시 사례를 중심으로)

  • Kim, Keun-uk;Chung, Younshik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.605-612
    • /
    • 2019
  • Traditionally, travel demand forecasts have been conducted based on the data collected by a survey of individual travel behavior, and their limitations such as the accuracy of travel demand forecasts have been also raised. In recent, advancements in information and communication technologies are enabling new datasets in travel demand forecasting research. Such datasets include data from global positioning system (GPS) devices, data from mobile phone signalling, and data from call detail record (CDR), and they are used for reducing the errors in travel demand forecasts. Based on these background, the objective of this study is to assess the feasibility of CDR as a base data for travel demand forecasts. To perform this objective, CDR data collected for Daegu Metropolitan area for four days in April including weekdays and weekend days, 2017, were used. Based on these data, we analyzed the correlation between CDR and travel demand by travel survey data. The result showed that there exists the correlation and the correlation tends to be higher in discretionary trips such as non-home based business, non-home based shopping, and non-home based other trips.

Forecasting of Motorway Path Travel Time by Using DSRC and TCS Information (DSRC와 TCS 정보를 이용한 고속도로 경로통행시간 예측)

  • Chang, Hyun-ho;Yoon, Byoung-jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.6
    • /
    • pp.1033-1041
    • /
    • 2017
  • Path travel time based on departure time (PTTDP) is key information in advanced traveler information systems (ATIS). Despite the necessity, forecasting PTTDP is still one of challenges which should be successfully conquered in the forecasting area of intelligent transportation systems (ITS). To address this problem effectively, a methodology to dynamically predict PTTDP between motorway interchanges is proposed in this paper. The method was developed based on the relationships between traffic demands at motorway tollgates and PTTDPs between TGs in the motorway network. Two different data were used as the input of the model: traffic demand data and path travel time data are collected by toll collection system (TCS) and dedicated short range communication (DSRC), respectively. The proposed model was developed based on k-nearest neighbor, one of data mining techniques, in order for the real applications of motorway information systems. In a feasible test with real-world data, the proposed method performed effectively by means of prediction reliability and computational running time to the level of real application of current ATIS.

Robust Contract Conditions Under the Newly Introduced BTO-rs Scheme: Application to an Urban Railway Project

  • KIM, KANGSOO
    • KDI Journal of Economic Policy
    • /
    • v.42 no.4
    • /
    • pp.117-138
    • /
    • 2020
  • Few studies have specifically focused on the uncertainty of demand forecasting despite the fact that uncertainty is the one of greatest risks for governments and private partners in PPP projects. This study presents a methodology for finding robust contract conditions considering uncertainty in travel demand forecasting in a PPP project. Through a case study of an urban railway PPP project in Korea, this study uncovered the risk of excessive government payments to private partners due to the uncertainty in contracted forecast ridership levels. The results allow the suggestion that robust contract conditions could reduce the expected total level of government payments and lower user fees while maintaining profitability of the project. This study offers a framework that assists contract negotiators and gives them more information regarding financial risks and vulnerabilities and helps them to quantify the likelihood of these vulnerabilities coming into play during PPP projects.

Development of BPR Functions with Truck Traffic Impacts for Network Assignment (노선배정시 트럭 교통량을 고려한 BPR 함수 개발)

  • Yun, Seong-Soon;Yun, Dae-Sic
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.4 s.75
    • /
    • pp.117-134
    • /
    • 2004
  • Truck traffic accounts for a substantial fraction of the traffic stream in many regions and is often the source of localized traffic congestion, potential parking and safety problems. Truck trips tend to be ignored or treated superficially in travel demand models. It reduces the effectiveness and accuracy of travel demand forecasting and may result in misguided transportation policy and project decisions. This paper presents the development of speed-flow relationships with truck impacts based on CORSIM simulation results in order to enhance travel demand model by incorporating truck trips. The traditional BPR(Bureau of Public Road) function representing the speed-flow relationships for roadway facilities is modified to specifically include the impacts of truck traffics. A number of new speed-flow functions have been developed based on CORSIM simulation results for freeways and urban arterials.

Tour-based Personalized Trip Analysis and Calibration Method for Activity-based Traffic Demand Modelling (활동기반 교통수요 모델링을 위한 투어기반 통행분석 및 보정방안)

  • Yegi Yoo;Heechan Kang;Seungmo Yoo;Taeho Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.32-48
    • /
    • 2023
  • Autonomous driving technology is shaping the future of personalized travel, encouraging personalized travel, and traffic impact could be influenced by individualized travel behavior during the transition of driving entity from human to machine. In order to evaluate traffic impact, it is necessary to estimate the total number of trips based on an understanding of individual travel characteristics. The Activity-based model(ABM), which allows for the reflection of individual travel characteristics, deals with all travel sequences of an individual. Understanding the relationship between travel and travel must be important for assessing traffic impact using ABM. However, the ABM has a limitation in the data hunger model. It is difficult to adjust in the actual demand forecasting. Therefore, we utilized a Tour-based model that can explain the relationship between travels based on household travel survey data instead. After that, vehicle registration and population data were used for correction. The result showed that, compared to the KTDB one, the traffic generation exhibited a 13% increase in total trips and approximately 9% reduction in working trips, valid within an acceptable margin of error. As a result, it can be used as a generation correction method based on Tour, which can reflect individual travel characteristics, prior to building an activity-based model to predict demand due to the introduction of autonomous vehicles in terms of road operation, which is the ultimate goal of this study.

Empirical Study on the Forecasting of the Hotel Room Sales (호텔 객실판매 예측에 관한 실증적 연구 - 서울지역 특급호텔을 중심으로 -)

  • Han, Seung-Youb
    • Korean Business Review
    • /
    • v.4
    • /
    • pp.281-295
    • /
    • 1991
  • Nothing is more incorrect than forecasting. Nevertheless, forecasting is one of the most important business activities for the effective management. There has been rapid changes of the growth rate in every respect of the Korean hospitaity industry, especially the hotel industry, before and after the 88 Olympic Games. Therefore, the hoteliers shall be in need of more-than-ever accourate demand forecasting for the more systematic management and control. Under the above circumstances, this study suggested the best forecasting technique and method for the better sales and operations of the hotel rooms. The number of rooms sold is selected as a dependent variable of this study which is regarded as the best representative factor of measuring the growth rate of the rooms division performance of the hotels. The first step was to select the most verifiable independent variable diferently from the other countries or other areas of Korea. As a result, the number of foreign visitors was chosen. Empirical research, i.e. correlation and multiple regression analysis, shows that this independent variable has a strong relationship with the dependent variable told above. The second procedure was to estimate the number of rooms will be sold in 1991 on the basis of the formula calculated through the multiple regression analysis. Time series technique was conducted using the data of the number of foreign visitors by purpose of travel from 1987 to 1990. For the more correct forecasting, however, it would be desirable to adopt the data from 1989 considering the product or the industry life cycle. In addition, deeper analysis for the monthly or seasonal forecasting method is needed as a future research.

  • PDF

Development of Outbound Tourism Forecasting Models in Korea

  • Yoon, Ji-Hwan;Lee, Jung Seung;Yoon, Kyung Seon
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.1
    • /
    • pp.177-184
    • /
    • 2014
  • This research analyzes the effects of factors on the demands for outbound to the countries such as Japan, China, the United States of America, Thailand, Philippines, Hong Kong, Singapore and Australia, the countries preferred by many Koreans. The factors for this research are (1) economic variables such as Korea Composite Stock Price Index (KOSPI), which could have influences on outbound tourism and exchange rate and (2) unpredictable events such as diseases, financial crisis and terrors. Regression analysis was used to identify relationship based on the monthly data from January 2001 to December 2010. The results of the analysis show that both exchange rate and KOSPI have impacts on the demands for outbound travel. In the case of travels to the United States of America and Philippines, Korean tourists usually have particular purposes such as studying, visiting relatives, playing golf or honeymoon, thus they are less influenced by the exchange rate. Moreover, Korean tourists tend not to visit particular locations for some time when shock reaction happens. As the demands for outbound travels are different from country to country accompanied by economic variables and shock variables, differentiated measure to should be considered to come close to the target numbers of tourists by switching as well as creating the demands. For further study we plan to build outbound tourism forecasting models using Artificial Neural Networks.

Compensation and Amendment of Highway Travel Demand Forecasting (고속도로 교통수요 보정모형에 관한 고찰)

  • Lee, Eui-Jun;Kim, Young-Sun;Yi, Yong-Ju;OH, Young-Tae;Choi, Keechoo;Yu, Jeong Whon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.86-95
    • /
    • 2013
  • In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.

Comparative Analysis of Travel Demand Forecasting Models (여행수요예측모델 비교분석)

  • Kim, Jong Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.121-130
    • /
    • 1995
  • Forecasting accuracy is examined in the context of Michigan travel demand. Eight different annual models are used to forecast up to two years ahead, and nine different quarterly models up to four quarters. In the evaluation of annual models' performance, multiple regression performed better than the other methods in both the one year and two year forecasts. For quarterly models, Winters exponential smoothing and the Box-Jenkins method performed better than naive 1 s in the first quarter ahead, but these methods in the second, third, and fourth quarters ahead performed worse than naive 1 s. The sophisticated models did not outperform simpler models in producing quarterly forecasts. The best model, multiple regression, performed slightly better when fitted to quarterly rather than annual data: however, it is not possible to strongly recommend quarterly over annual models since the improvement in performance was slight in the case of multiple regression and inconsistent across the other models. As one would expect, accuracy declines as the forecasting time horizon is lengthened in the case of annual models, but the accuracy of quarterly models did not confirm this result.

  • PDF