• Title/Summary/Keyword: transverse cracks

Search Result 155, Processing Time 0.028 seconds

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

Seismic behavior of interior RC beam-column joints with additional bars under cyclic loading

  • Lu, Xilin;Urukap, Tonny H.;Li, Sen;Lin, Fangshu
    • Earthquakes and Structures
    • /
    • v.3 no.1
    • /
    • pp.37-57
    • /
    • 2012
  • The behavior of beam-column joints in moment resisting frame structures is susceptible to damage caused by seismic effects due to poor performance of the joints. A good number of researches were carried out to understand the complex mechanism of RC joints considered in current seismic design codes. The traditional construction detailing of transverse reinforcement has resulted in serious joint failures during earthquakes. This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones. In this study, ten full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations. The results of the experiment showed that adding additional bars is a promising approach in reinforced concrete structures where earthquakes are eminent. In terms of overall cracking observation during the test, the specimens with additional bars (diagonal and straight) compared with the ones without them showed fewer cracks in the column. Furthermore, concrete confinement is certainly an important design measure as recommended by most international codes.

Nondestructive Inspecting for Multilayer Dielectric Material using Synthetic Aperture Radar (SAR를 이용한 다층 유전체의 비파괴 검사)

  • Kim, Sung-Duck
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.424-427
    • /
    • 2016
  • A microwave NDI(Nondestructive Inspecting) method, based on SAR(Synthetic Aperture Radar) for inspecting such internal flaws or physical demage of FRP(Fiber Reinforced Polymer), is proposed in this paper. When a microwave is incident perpendicularly toward a multilayer dielectric FRP material, it gives a good response for the interfaces or transverse cracks. Interface depths or defect positions can be presented from the reflection waves, as using SAR imagery technique. As a result, it can be shown that such a SAR system can effectively inspect the type, size, or location of flaws within FRP composite material.

Influence of Serial Moving Masses on Dynamic Behavior of Simply Supported Beam with Crack (크랙을 가진 단순지지 보의 동특성에 미치는 이동질량의 영향)

  • 윤한익;김영수;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.555-561
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported Euler-Bernoulli beams with the moving masses. The influences of the velocities of moving masses, the distance between the moving masses and a crack have been studied on the dynamic behavior of a simply supported beam system by numerical method. The Presence of crack results In large deflection of beam. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. Totally, as the velocity of the moving masses and the distance between the moving masses are increased, the mid-span deflection of simply supported beam with the crack is decreased.

Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack (크랙을 가진 유체유동 단순지지 파이프의 동특성 해석)

  • 윤한익;최창수;손인수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.562-569
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion Is derived by using Lagrange’s equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results In higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally. as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid Is Increased. The time which produce the maximum dynamic deflection of the simply supported pipe Is delayed according to the increment of the crack severity.

Preliminary investigation of Ic homogeneity along the longitudinal direction of YBCO coated conductor tape under tensile loading

  • Dizon, J.R.C.;Oh, S.S.;Sim, K.D.;Shin, H.S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.24-28
    • /
    • 2013
  • In this study, the homogeneity of critical current, $I_c$, along the lengthwise direction in the coated conductor (CC) tape under uniaxial tension was investigated using a multiple voltage tap configuration. Initially, a gradual and homogeneous $I_c$ degradation occurred in all subsections of the tape up to a certain strain value. This was followed by an abrupt $I_c$ degradation in some subsections, which caused scattering in $I_c$ values along the length with increasing tension strain. The $I_c$ degradation behaviour was also explained through n-value as well as microstructure analyses. Subsections showed $I_c$ scattering corresponding to damaged areas of the CC tape revealed that transverse cracks were distributed throughout the gauge length. This homogeneous $I_c$ degradation behaviour under tension is similar with the case under torsion strain but different with the case under hard bending which were previously reported. This behaviour is also different with the case using Bi-2223 HTS tapes under tension strain.

Penetration Fracture Characteristics of Orthotropic CFRP Laminates Shells according to Curvature (곡률이 다른 직교이방성 CFRP 적층쉘의 관통파괴특성)

  • Yang, Yong Jun;Pyeon, Seok Beom;Cha, Cheon Seok;Yang, In Young
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.6-11
    • /
    • 2016
  • CFRP composite laminates are widely used as structural materials for airplanes, automobile and aerospace vehicles because of their high strength and stiffness. This study aims to examine an effect of curvature on the penetration fracture characteristic of an orthotropic composite laminated shell. For the purpose, we manufactured orthotropic CFRP shell specimen with different curvatures, and conducted a penetration test using an air-gun. Those specimens were prepared to varied curvature radius(${\infty}$, 200mm, 150mm and 100mm)and were stacked to $[O^{\circ}{_3}/90^{\circ}{_3}]_s$. When the specimen is subjected to transverse impact by a steel sphere(${\Phi}10$), the velocity of steel sphere was measured both before and after impact by determining the time for it to pass two ball-screen sensors located a known distance apart. As the curvature increases, the absorption energy and the critical penetration energy increased linearly because the resistance to the bending moment. Patterns of cracks caused by the penetration of CFRP laminated shells included fiber breakage, lamina fracture, matrix crack interlaminar crack and intralaminar crack.

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Thermal Stress-induced Edge Failure of Thin Composite Laminates (열응력에 의한 얇은 복합적층판의 자유경계단 부위 파손)

  • 이성혁;최낙삼
    • Composites Research
    • /
    • v.12 no.1
    • /
    • pp.28-36
    • /
    • 1999
  • Thermal stress-induced failure in the free edge region of various thin carbon/epoxy composite laminates(1mm thick) has been investigated using the three-dimensional finite-element stress analysis, ultrasonic C-scan and microscopic observations. High thermal in-plane and interlaminar stresses were predicted in the interior layer near the free edge boundaries of the laminates. In the interior lamina, not in the skin lamina, of the thin laminates with lay-up of $[0_2/90_2]_s,\;[45_2/-45_0]_s,\;[0_2/60_2]_s$ treated by liquid $N_2$ immersion, many transverse matrix cracks took place due to thermal stress concentration, which agreed qualitatively with the above predictions.

  • PDF

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.