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Abstract 

This study is focused on an integrated numerical modeling enabling one to investigate the dynamic 
behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by 
micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) 
determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-
wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate 
layers, II) development of an efficient computational approach enabling one to perform transient response 
analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking 
and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered 
composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of 
the implications of stiffness degradation on dynamic response to impact loads.

1. Introduction 

To solve the problem of dynamic response of the 2-D 
textile and the 3-D woven textile composites, shown in 
Fig. 1, a thorough study of their mechanical properties 
and structural behavior is needed. For example, the main 
difficulty in the textile composite structures is the 
computational complexity in terms of geometry and 
material modeling. A review of publications on the 
mechanical property predictions and static response 
analysis of 3-D woven composites can be found in 
several studies1-8. These structures were also investigated 
in previous studies of this study. In Ref. [1], an example 
of multi-scale predictive analysis of 3-D woven 
composites exposed to static loads was presented. Some 
aspects of the aforementioned publication5-8 are 
implemented in this work for developing a dynamic 
analysis approach. 

The approach of the damage and failure of the 2-D 
textile and the 3-D orthogonal woven textile composite 
structures under severe dynamic loads involves a number 
of issues of high complexity that should be addressed 
such as: complex damage modes in the textile composite 
materials; the material behavior under different strain 
rates, and determination of the constitutive behavior of 
composites in the presence of matrix cracking5, matrix 
and/or fiber yielding. These problems are already 
mentioned in Ref. [6]. It is essential to develop a 
computational methodology7 that may lead to an 
improved understanding of the impact mechanisms about 
the textile layered structures. 

To predict the dynamic response of 2-D and 3-D 
woven textile composite structures featuring matrix 
cracking5, see Fig.2, a unit cell model of 3-D woven yarn 
with small infinite slit cracks of matrix regions is 
considered. This study assumes that a number of small 
slit cracks along the transverse direction, and the specific 
system of yarns consist of the transverse cracks and 
fibers. The crack can be depicted by a crack density ( β ), 
and a crack dimension ( a ). 

This study uses the following three hierarchal steps7: 
(i) unit cell micro-level (similarly to the level of static 
analysis Ref. [1]), (ii) homogenized warp and fill fiber 
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ply level (thus modeling 2-D and 3-D woven composite 
in a layer-wise fashion, similarly to the “discrete layer” 
approach in Ref.[1]), and (iii) by adopting a thick 
anisotropic layer, the structural model is implemented. In 
order to validate some results obtained within this 
structural model, the degradation of structural 
characteristics are compared with results as shown in 
previous literature. 

Moreover, additional numerical schemes; micro-
mechanical equations, the Self-Consistent method and an 
iterative scheme6, are applied into the three hierarchical 
levels at each time-step. The implementation of the three 
hierarchical levels is essential in order to get solutions of 
the behavior of 2-D and 3-D degraded textile composite 
structures exposed to impact loads. To fulfill the three 
hierarchical levels in the context of this research, a 
numerical program on the dynamic modeling of textile 
composite structures layered shell types, as a simple in-
house code for shell structures, is developed. 

For a better understanding of micro-cracked textile 
composite structures, this study uses basic concepts and 
algorithms on the hierarchical level analyses. And also, 
for studying the geometrical effects of textile yarns’ 
geometry, several mathematical and geometrical models5-

6 are implemented and compared the results of their 
models. From the comparisons, this study found that the 
strand geometry considerably effect the dynamic 
behavior of textile composite structures subjected to 
dynamic impact loads. More detail numerical procedures 
and examples for the micro-cracked textile composites 
are presented next sections. 

2. Three-level Hierarchical Analysis 

As mentioned in the introduction, the three-level 
hierarchical analysis7 consists of three parts; the micro-
mechanical analysis, the layer-wise analysis and the 
structural analysis. In this section, the basic constitutive 
equations and concepts of three-level hierarchical 
analysis are explained. 

2.1 Micro-mechanical analysis  
As a first step, the micro-mechanical analysis uses the 

2-D and 3-D micro-model to determine the effective 
elastic characteristics via the laminate model/Repeating 
Unit Cell (RUC) concept5-6 shown in Fig.1. The laminate 
model consists of four lamina layers: the warp, the fill, 
and the top and the bottom lamina, these are all 
represented in Ref.[7]. To calculate the effective elastic 
properties, micro-mechanical equations of composites 
are used, and in this context, the iso-stress method is 
applied for the fiber and matrix components in each 
lamina. Within this step, the crack density scheme for the 
matrix cracking is used to calculate the degraded 
effective elastic properties in the yarns that depend on 
geometrical parameters, such as yarn-thickness, tow-
packing factors and fiber packing types, etc. The matrix 
cracking is expressed as a function of the crack density 
defined as the average number of cracks within a control 

domain. For the cracked structures, the Self-Consistent 
scheme6 and the relationship between stress and strains 
are applied 

Cεσ = , Sσε = , ISCCS == , CPCCQ −= (1) 
Here, C and S are the stiffness and compliance 

matrices, and I is the unit diagonal matrix. Also σ and 
ε are stress and strain matrices, respectively. The 
matrices P and Q  are the relative stiffness and 
compliance matrices about the matrix C and S , 
respectively. All components in the stiffness and 
compliance matrices include the crack density values. To 
find the overall stiffness and compliance matrices for the 
yarns, the relations between the average values for the 
stress and strain are used 

∑ =1rv , ∑ σ=σ rravg v , ∑ ε=ε rravg v    (2) 
Here r means the fiber and matrix phases in the yarns. 

To get the relative dimensions of fiber and matrix in the 
yarns, this study introduces volume weight factors such 
as volume fractions ( rv ); these terms will intervene in 
the constitutive relations for fiber and matrix phases that 
have to satisfy the equilibrium and compatibility 
equations within micro-yarn slices.  

2.2 Layer-wise Analysis 
As a second step, the layer-wise analysis considers 

each warp and fill layer of fibers with their associated 
resin as a homogenized anisotropic lamina having 
effective properties determined in Step 1 (Micro-
mechanical analysis). For example, a 3-D woven 
composite with 2 “warp”, 3 “fill” and 2 “surface” 
effective composite laminae will be treated as a 7-layer 
laminate. As a result, a layer-wise approach shown in 
Ref.[7] will be applied to the components of lamina 
layers (upper surface, fill, warp and lower surface 
laminae).  

By combining several sub-laminate layers, a thick 
laminate is formed within an RUC. A typical repeating 
cell contains N  composite laminas including the fill, 
warp and z-yarns in an arbitrary orientation. The 
coordinate system is set up such that warp ( x ) and fill 
( y ) axes lie in the plane of the yarns and z-axis ( z ) is 
perpendicular to this plane. Within the RUC, the 
following effective properties of stresses and strains are 
defined as 

∫ σ=σ
V

ijij dV
V
1

, ∫ ε=ε
V

ijij dV
V
1

          (3) 

In the above equations, V is a representative volume 
that contains the total thickness of the RUC, and its in-
plane dimensions are considered to be infinitesimal so 
that the stresses and strains ( ijσ = avgσ , ijε = avgε ) in 
each lamina are uniform in the planar directions. Since 
the stresses and strains in each lamina are constant, Eq.3 
can be integrated to yield  
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Here )(k
ijσ and )(k

ijε are the stresses and strains in the 

k th sub-laminate layer, and kν and kt  are the volume 

fraction and thickness of the k the sub-laminate layer, 
respectively, and h is the total thickness of the RUC.  

2.3 Structural Analysis 
As a third step using the undamaged effective elastic 

properties in each lamina, the equivalent elastic 
properties of the textile composite, assumed to be a 
single-layer anisotropic material, are determined using 
the iso-strain method. This method assumes the same 
strains in each lamina along the z-axis. In the second step, 
the “degraded” effective elastic properties of the textile 
layered composite are predicted. The micro-cracks 
illustrated in Fig. 2 are produced at the limit load level, 
particularly on the tension side of the textile layers 
subjected to bending moments. To solve the case without 
cracks, the study assumes that some friction forces exist 
in the crack surfaces. As a result, the no crack case of the 
yarns is modeled by assigning the values for the crack 
density to be zero. 

To obtain tangent stiffness matrix and the updated 
state of stress, our model has to first find whether the 
crack is opened or closed after each time-step by 
considering the sign of the transverse stresses or strains 
at the material points within the element or the RUC. 
Depending on the opening and closing of a crack, the 
stiffness terms in the constitutive relation corresponding 
to the transverse direction, are assumed to be 
changed/unchanged. The finite element analysis is 
performed until the state of crack opening and closing in 
the textile composite becomes unchanged. The scheme to 
update the degraded tangent stiffness is implemented 
using an iterative method. 

3. Dynamic Plate & Shell Structures 

This section considers the dynamic behaviors of shell 
structures9-12 based on a developed degenerated shell 
element.  

3.1 Dynamic Behavior of General Plates  
This section considers only the dynamic behavior of 

the general shell structures on the impact loading, while 
the dynamic response of textile composite structures is 
suggested in next section. 

This work investigates effects of initial stress on the 
simply supported rectangular plate. The same geometry, 
loading and material properties of Ref. [11] are used to 
describe transient dynamic behaviors. Prior to and during 
the application of the transverse load, the plate is 
subjected to a constant and uniformly distributed 
membrane pre-stress xx EF=σ in the direction of the 
plate edge of length a  as shown in Fig. 3. For different 
initial stress conditions, Figures 3 show the time history 

of the plate bending moments with the thickness 
ratio, α =0.1. The present dimensionless results are 
compared with those of Reismann and Tendorf11. 

From the same numerical examples suggested in the 
previous literature11-12, the current dynamic modeling of 
shell structures shows a considerably good concurrency 
and validation, see Figs.4. By using this same 
degenerated shell modeling and the developed three-
level hierarchical analysis, this study explores the 
problem of dynamic response of the textile composite 
shells. In addition the geometrical effects on the dynamic 
behavior of textile-layered shell structures are 
investigated by various mathematical and geometrical 
models of the 2-D plain woven and the 3-D orthogonal 
woven composites.  

3.2 Dynamic Behavior of Textile Shells  
To evaluate the dynamic behavior of textile composite 

shell structures, this study considers a clamped circular 
textile-layered plate subjected to a suddenly applied 
uniformly distributed load shown in Fig.5. Material 
property of Hercules of AS4 Graphite & 3501-6 Epoxy 
suggested in Ref. [3] is used. The plate shown in Figure 
25 consisting of 41 elements is subjected to a distributed 
step pressure of P =0.55MPa using the time 
step tΔ =25E-4 sec and boundary conditions of clamped 
edges are used. The radius and thickness are 
=a 440mm and h =3mm are considered. Layers of 

plate consist of two plain–woven textile layers modeled 
by Sine Function Model I (SFM I)13 and yarn sizes of 2K, 
10K and 18K are used here. Here, K means 1000 fiber 
bundles within a yarn. Figure 6 shows that the large yarn 
size has larger deflections to the uniform loading. 

In Fig.7 a textile-layered spherical cap subjected to a 
suddenly applied uniformly is described. Material 
property of E-glass/Vinylester suggested in Ref. [4] is 
used. The 41 degenerated shell elements, the uniform 
pressure P =6psi, the time step tΔ =1E-5sec, the radius 
=R 13in, the thickness t =0.03in and the central angle 

of α =23oare considered respectively. The shell stacking 
sequence is [plain-woven]3 modeled by Sine Function 
Model I and the yarn geometry is given in Ref. [4]. 
Figures 7 show that the crack densities and gap lengths 
affect the central deflections. From Fig. 7, large values of 
crack density show large changes in deflections with 
increases in gap lengths. 

From Figs. 6 and 7, the dynamic behavior of textile 
composite shells is considerably related to geometrical 
shapes of strands. In the first case of Fig. 6, the three 
yarn cases (2K, 10K and 18K) made a little different 
time history of central deflections. However, the trend 
curves of Fig. 7 are showing the same tendency of 
central deflections with different magnitudes during the 
infinitesimal time steps. In the second case of a spherical 
textile layered cap shown in Fig. 7, this study 
investigates the dynamic behavior of textile layered caps 
consisting of various gap lengthened yarns under a 
uniform pressure. And also different crack densities and 
a constant fiber volume fraction are considered to check 
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the dynamic behavior of spherical textile layered cap 
under the uniform pressure. As shown in the first case of 
a clamped circle textile layered plate, the central 
deflection time history of spherical textile layered cap 
show the considerably geometrical dependency of strand 
shapes. The geometrical yarn dependency of textile 
layered shells and plates are basically induced from 
yarns’ material properties connected with yarn 
formations. For example, a large sized yarn makes more 
curved arc-lengths along the center line of yarns, while a 
small sized yarn shapes a little curved center line along 
the fiber bundle axis. When more curved arc-lengths for 
the large sized yarns make large crimp angles with 
respect to different bent regions of strands, the transverse 
direction components of yarn stiffness are more various 
values compared to those of the small sized yarns. More 
detailed phenomena for yarn crimp angles are presented 
in Refs. [5-6]. 

4. Summary 

This study shows the dynamic behavior of general 
shell structures and textile layered composite structures 
on the transient loading. From the current numerical 
analyses, we can see that the presented hierarchical 
modeling for textile layered shells is very effective to 
depict the dynamic behavior. Although the geometrical 
model of textile layered shells is a difficult model unlike 
general shell structures, this work shows that the present 
modeling of three-level hierarchical analysis effectively 
analyzed the textile layered structures’ dynamic response 
by employing the introduction of micro-mechanical 
equations on the composites, the concept of layer-wise 
analysis and the structural level approaches. With the 
numerical results, the textile composite structures are 
considerably dependent on the geometrical shapes of 
yarns in the unit cells. For example, the different strand 
of fills and warps induce variant stiffness of yarns during 
the micro-mechanical analysis. Furthermore the different 
stiffness induces various equivalent moduli of textile 
composite layers in the layer-wise analysis, and the 
dynamic response of textile layered shells is finally made. 

From this work, some interested dynamic behavior of 
textile composites are briefly suggested, and other 
geometrical effects of yarns on the transient response of 
textile composites are presented. First of all, when the 
textile layered structures are analyzed, more exact 
modeling for geometrical yarn shapes and composites in 
the fill and the warp is needed. To obtain better solutions, 
there will be needed the exact geometrical variables of 
yarns and the appropriate continuum equations of fiber 
and matrix in the strands. In addition a better transient 
algorithm can make good solutions on the dynamic 
response of textile layered structures. For future 
challengeable researches, there are several different 
typed textile composite structures, i.e. 2-D braids and 3-
D orthogonal weaves. From this point, the current 
research is studying a various types of 2-D plain weaves 
and applying to the three-level hierarchical analysis. 
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Fig. 1 2-D plain weaves and 3-D orthogonal weaves. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Unit cell shape of 3-D weaves with small 
cracks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Plate geometry, loading and bending moment 
history for an initially stressed plate11. 
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Fig. 4 Circular plate and bending moment history12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Three yarn sizes and symmetric quadrant of 
clamped circular textile-layered plate. 

Fig. 6 Central deflection time history. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Spherical textile layered cap with uniform 
pressure and central deflection time histories 
with various crack densities and gap-lengths. 
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