• Title/Summary/Keyword: transport modeling

Search Result 705, Processing Time 0.035 seconds

농작물(農作物)의 운송(運送)시스템 분석(分析)을 위한 슬램II 시뮬레이션 모델링(I) -운송시스템 모델 개발- (SLAMII Simulation Modeling for Analyzing a Crop Transport System(I) -Modeling of Transport system-)

  • 고학균;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제16권2호
    • /
    • pp.159-166
    • /
    • 1991
  • A simulation model was developed for analyzing a crop transport system using SLAMSYSTEM. The developed model could predict total delivered amount and delivery rate of a crop under various conditions of transport and analyze the effects of work factors on the efficiency of the crop transport system. A simulation model was also developed to analyze a rice transport system based on the generalized model of the crop transport system.

  • PDF

Multiscale modeling of smectite illitization in bentonite buffer of engineered barrier system

  • Xinwei Xiong;Jiahui You;Kyung Jae Lee;Jin-Seop Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.3242-3254
    • /
    • 2024
  • With the increasing usage of nuclear energy, how to properly dispose nuclear waste becomes a critical issue. In this study, a multiscale modeling approach combining the experimental findings is presented to address the illitization process, its impact on transport properties, and system behavior of bentonite buffer in engineered barrier systems (EBS). Through the pore-scale modeling, reactive transport properties such as illite generation rate and effective diffusion coefficient of potassium ion as a function of porosity and temperature are quantified by employing the findings of hydrothermal reaction experiments of Bentonil-WRK. The capability of pore-scale modeling has been developed based on the Darcy-Brinkmann-Stokes equation, involving the processes of smectite illitization and clay swelling. Obtained reactive transport properties are utilized as input parameters for the macroscale modeling to predict the long-term behavior of bentonite buffer in EBS. As such, this study involves the whole workflow of quantifying the reaction parameters of smectite illitization through the hydrothermal reaction experiments, and numerically modeling the reactive transport process of smectite illitization in bentonite buffer of EBS from pore-scale to macroscale. The presented multiscale modeling findings are expected to provide reliable solution for safe nuclear waste disposal with EBS.

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제8권3호
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

질량 이동 모사 프로그램 개발을 위한 골드심 이동 패쓰웨이의 이해와 활용 (Understanding and Their Application of GoldSim Transport Pathways to Mass Trasport Simulation)

  • 이연명;정종태
    • 방사성폐기물학회지
    • /
    • 제12권2호
    • /
    • pp.135-151
    • /
    • 2014
  • 상용의 GoldSim과 GoldSim 이동 모듈 (GoldSim Transport Module; GTM)을 이용하여 방사성폐기물 처분시스템과 같이 복잡한 질량 이동 시스템을 신뢰성 있고 효율적으로 모사할 수 있다. 그러나 GTM의 특성을 보다 정확하게 이해하여야 이를 사용하여 실제 처분시스템의 안전성 평가 프로그램을 개발할 때 발생할 수 있는 오류를 피할 수 있다는 것을 인지하는 것이 중요하다. 이를 위하여 GTM에서 다양하게 제공되는 요소 (element) 중, 질량 이동 모사에 유용한 Transport pathway의 특징에 대하여 소개하고, 방사성폐기물 처분시스템 안전성 평가를 위해 시스템 내 핵종의 거동과 같은 질량 이동 모사에서 이에 대한 올바른 활용 방안을 제시하였다.

Object-Oriented Mission Modeling for Multiple Transport Aircraft

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권3호
    • /
    • pp.264-271
    • /
    • 2013
  • A method of multiple transport-aircraft mission modeling is proposed in order to improve the efficiency of evaluating and optimizing pre-mission plans. To deal with the challenge of multiple transport-aircraft missions, the object-oriented modeling method is utilized. The elements of the mission are decomposed into objects and businesses, And the major mission objects and their important properties are summarized. A complex mission can be broken down into basic business modules such as the ground section and flight section. The business models of loading and fueling services in the ground section are described. The business model of the flight section is composed of an air route and flight profile with the flight equation and the fuel consumption model. The logical relationship of objects and business modules is introduced. The architecture of the simulation system, which includes a database, computation module, graphical user interface (GUI) module, and a result analysis module, is established. A sample case that includes two different plans is provided to verify the model's ability to achieve multi-aircraft composite mission simulation.

음이온계 약물의 간수송과정에 있어서 담체매개 수송의 약물동력학적 모델링 및 시뮬레이션 (Pharmacokinetic Modeling and Simulation of the Carrier-Mediated Hepatic Transport of Organic Anions)

  • 이준섭;강민희;김묘경;이명구;정석재;심창구;정연복
    • 약학회지
    • /
    • 제47권2호
    • /
    • pp.110-119
    • /
    • 2003
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the ″in vivo counter-transport″ phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of ″counter-transport″ phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of a organic anion were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, ″in vive counter-transport″ phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The ″in vivo counter-transport″ phenomena in the hepatic transport of a organic anion were well demonstrated by incorporating the carrier-mediated process. However, the ″in vivo counter-transport″ phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called ″in vivo counter-transport″ experiments.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(I)
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

NUMERICAL MODELING OF NON-CAPACITY MODEL FOR SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME

  • S. JELTI;A. CHARHABIL;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.181-192
    • /
    • 2023
  • This work deals with the numerical modeling of dam-break flow over erodible bed. The mathematical model consists of the shallow water equations, the transport diffusion and the bed morphology change equations. The system is solved by central upwind scheme. The obtained results of the resolution of dam-beak problem is presented in order to show the performance of the numerical scheme. Also a comparison of central upwind and Roe schemes is presented.