• Title/Summary/Keyword: transport and diffusion

Search Result 728, Processing Time 0.024 seconds

The Study of Electron Transport coefficients in $SiH_4$-Ar Mixtures by Using Boltzmann Equation Analysis and Monte-Carlo Simulation (볼츠만방정식과 몬테칼로법에 의한 $SiH_4$-Ar 혼합가스의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.169-174
    • /
    • 2001
  • The electron transport coefficients(the electron drift velocity, W, and the longitudinal and transverse diffusion coefficient, D$_{L}$ and D$_{T}$) in SiH$_4$-Ar mixtures containing 0.5% and 5.0% monosilane were calculated over the E/N range from 0.01 to 300 Td and over the gas pressure range 0.5, 1.0 and 1.5 Torr by the time-of-flight(TOF) method of the Boltzmann equation(BE.) and Monte-Carlo simulation(MCS). The electron energy distribution function in each SiH$_4$-Ar mixtures at E/N=10 Td and L=0.2 cm, which in equilibrium region in the mean electron enregy were compared.red.

  • PDF

An adaptive approach for the chloride diffusivity of cement-based materials

  • Tran, Bao-Viet;Pham, Duc-Chinh;Loc, Mai-Dinh;Le, Minh-Cuong
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Adaptive schemes are constructed in this paper for modeling the effective chloride diffusion coefficient of cement-based materials (paste and concrete). Based on the polarization approximations for the effective conductivity of isotropic multicomponent materials, we develop some fitting procedures to include more information about the materials, to improve the accuracy of the scheme. The variable reference parameter of the approximation involves a few free scalars, which are determined through the available numerical or experimental values of the macroscopic chloride diffusion coefficient of cement paste or concrete at some volume proportions of the component materials. The various factors that affect the chloride diffusivity of cement-based material (porous material structure, uncertainty of value of the chloride diffusion coefficient in water-saturated pore spaces, etc.) may be accounted to make the predictions more accurate. Illustrations of applications are provided in a number of examples to show the usefulness of the approach.

Transport Properties of Lennard-Jones Mixtures: A Molecular Dynamics Simulation Study

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.641-646
    • /
    • 2008
  • Equilibrium molecular dynamics simulations in a canonical ensemble are performed to evaluate the transport coefficients of several Lennard-Jones (LJ) mixtures at a liquid argon states of 94.4 K and 1 atm via modified Green-Kubo formulas. Two component mixture of A and B is built by considering the interaction between A and A as the attractive (A) potential, that between A and B as the attractive potential (A), and that between B and B as the repulsive potential (R), labelled as AAR mixture. Three more mixtures - ARA, ARR, and RAR are created in the same way. The behavior of the LJ energy and the transport properties for all the mixtures is easily understood in terms of the portion of attractive potential (A %). The behavior of the thermal conductivities by the translational energy transport due to molecular motion exactly coincides with that of diffusion constant while that of the thermal conductivities by the potential energy transport due to molecular motion is easily understood from the fact that the LJ energy of AAR, ARR, and RAR mixtures increases negatively with the increase of A % from that of the pure repulsive system while that of ARA changes rarely.

Measurement of In-plane Gas Permeability of Gas Diffusion Layers in Proton Exchange Membrane Fuel Cells under Compressive Strain (고분자 전해질 연료전지 가스확산층의 압축상태 평면 기체투과율 측정)

  • Oh, Changjun;Lee, Yongtaek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.9
    • /
    • pp.367-372
    • /
    • 2016
  • Gas diffusion layer (GDL) of PEMFCs plays a role that it diffuses the reactant gases to the catalyst layer on the membrane and discharge water from the catalyst layer to the channel. Physical parameters related to the mass transport of GDL are mostly from the uncompressed GDLs while actual GDLs in the assembled stacks are compressed. In this study, the relation of compression and strain of GDLs with various Polytetrafluoroethylene (PTFE) loading is measured experimentally and In-plane gas permeability is measured at the condition that the GDLs are in compressive strain. The gas permeability decreased with the loading of PTFE and the presentation of gas permeability under compressive stain is expected to improve the accuracy of modeling work of mass transport in the GDL.

The Transport Phenomena of Some Solutes through the Copolymer Membranes of 2-hydroxyethylmethacrylate (HEMA) with Selected Hydrophobic Monomers

  • Kim, Whan-Gun;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.3
    • /
    • pp.128-131
    • /
    • 1985
  • A series of copolymer membranes of 2-hydroxyethylmethacrylate (HEMA) with selected hydrophobic monomers were prepared without crosslinking agents. The equilibrium water content, the partition coefficient, and the permeability of the solutes such as urea, methylurea, 1,3-di-methylurea, and acetamide via these membranes were measured. The partition coefficient data show that as the hydrophobicity of solutes increased, the partition of solutes were dictated by hydrophobic interaction between solute and polymer matrix. Diffusion coefficients obtained in these experiments decrease as the water content of polymer membrane decreases. This decrease is blunt as the excess heat capacities, ${\phi}C^0_p$ (excess) in aqueous solution at infinite dilution of solute increases. To investigate the relationship between water content and diffusion coefficient, the results of the diffusion experiments were examined in light of a free-volume model of diffusive transport. The remarkable increase of urea mobility in the polymer network containing relatively larger bulk water can be considered as water structure breaking effect.

Study on simultaneous heat and mass transfer during the physical vapor transport of Hg2Br2 under ㎍ conditions

  • Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.107-114
    • /
    • 2019
  • A computational analysis has been carried out to get a thorough and full understanding on the effects of convective process parameters on double-diffusive convection during the growth of mercurous bromide ($Hg_2Br_2$) crystals on earth and under ${\mu}g$ conditions. The dimensional maximum magnitude of velocity vector, ${\mid}U{\mid}_{max}$ decreases much drasticlly near Ar = 1, and, then since Ar = 2, decreases. The ${\mu}g$ conditions less than $10^{-2}g$ make the effect of double-diffusion convection much reduced so that adequate advective-diffusion mass transfer could be obtained.

Solute Transport in Rock Fractures

  • Yeo, In-Wook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.89-92
    • /
    • 2001
  • This study aims at investigating the relationship between dispersion coefficient ratio to molecular diffusion coefficient (D$_{l}$ /D$_{m}$) and Peclet number (Pe) for multi-solute system in non-Darcian flow regime. Existing understanding on solute dispersion is primarily derived from one-solute system in Darcian flow regime. We found that solute dispersion in rock fractures can be characterized by the mechanism of both macrodispersion and Taylor dispersion, even for non-Darcian f]ow domain. For the Darcian flow regime even different solutes lead to the same D$_{l}$ /D$_{m}$ at same Pe. However, as the flow becomes non-Darcian, solute with a higher molecular diffusion coefficient result in higher D$_{l}$ /D$_{m}$ at tile same Pe than that with a lower diffusion coefficient.cient.

  • PDF

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

  • Lee, Song Hi;Kim, Jahun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3527-3531
    • /
    • 2014
  • In this paper, we report thermodynamic and transport properties (diffusion coefficient, viscosity, and thermal conductivity) of diatomic gases ($H_2$, $N_2$, $O_2$, and $Cl_2$) at 273.15 K and 1.00 atm by performing molecular dynamics simulations using Lennard-Jones intermolecular potential and modified Green-Kubo formulas. The results of self-diffusion coefficients of diatomic gases obtained from velocity auto-correlation functions by Green-Kubo relation are in good agreement with those obtained from mean square displacements by Einstein relation. While the results for viscosities of diatomic gases obtained from stress auto-correlation functions underestimate the experimental results, those for thermal conductivities obtained from heat flux auto-correlation functions overestimate the experimental data except $H_2$.

Magneto-transport properties of CVD grown MoS2 lateral spin valves

  • Jeon, Byeong-Seon;Lee, Sang-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.336-336
    • /
    • 2016
  • We have investigated magneto-transport properties in a MoS2 lateral spin-valve structures for different ferromagnetic CoFe electrode shapes and MoS2 channel lengths. For these devices, high quality and large-scale MoS2 thin films were synthesized through sulfurization of epitaxial MoO3 films and these sulfurized-MoO3 thin films properties are in good agreements with measurements on exfoliated MoS2 film. Magneto-transport measurements show a clear rectangular magnetoresistance signal of 0.16% and a spin polarization of 0.00012%. By using the one-dimensional spin diffusion equation, we extracted the spin diffusion length and coefficient, finding them to be 12 nm and $1.44{\times}10-3cm2/s$, respectively. These small values of magnetoresistance and spin polarization could be enhanced by appeasement of conductivity mismatch between the ferromagnet and semiconductor interface.

  • PDF

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.