• Title/Summary/Keyword: transport and diffusion

Search Result 732, Processing Time 0.041 seconds

PAN based-based copolymer membranes for dehydration of water/pyridine mixture (물/피리딘 혼합물 분리용 PAN계 공중합막)

  • 박춘호;남상용;이영무
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.73-74
    • /
    • 1998
  • 1. Introduction : We have researched to separate water effectively from aqueous pyridine solution. In our previous papers, we have proposed new separation mechanism, in-situ complex, which is different from solution-diffusion and accelerated transport by hydrogen bonding. We have adopted in-situ complex mechanism to membranes containing phosphoric acids as well as acrylic acid and sulfonic acid in copolymer for dehydration of pyridine.

  • PDF

Investigation of Water Transport in Newly Developed Micro Porous Layers for Polymer Electrolyte Membrane Fuel Cells

  • Alrwashdeh, Saad S.;Markotter, Henning;Haussmann, Jan;Hilger, Andre;Klages, Merle;Muller, Bernd R.;Kupsch, Andreas;Riesemeier, Heinrich;Scholta, Joachim;Manke, Ingo
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.101-104
    • /
    • 2017
  • In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field.

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF

An Investigation of Diffusion of Iodide Ion in Compacted Bentonite Containing Ag2O (Ag2O를 첨가한 압축 벤토나이트에 대한 요오드 이온의 확산 특성 관찰)

  • Yim, Sung-Paal;Lee, Ji-Hyun;Choi, Heui-Joo;Choi, Jong-Won;Lee, Cheo-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • In the compacted bentonite containing $Ag_2O$, the transport of iodide ion was investigated by Through-diffusion method. It is confirmed that Iodide ion is transported by diffusion process in the compacted bentonite containing $Ag_2O$ as well as in the compacted bentonite without $Ag_2O$. However, the lag-time of iodide ion in the compacted bentonite containing $Ag_2O$ is larger than that in the compacted bentonite without $Ag_2O$. The increase of the lag-time was observed in pure iodide ion solution and also in 0.1M NaCl-iodide ion solution. The apparent diffusion coefficient of iodide ion in the compacted bentonite containing $Ag_2O$ has lower value than that in the compacted bentonite without $Ag_2O$. The effect of $Ag_2O$ on the effective diffusion coefficient was not clearly investigated in the compacted bentonite containing $Ag_2O$ while the values of effective diffusion coefficient of iodide ion in the compacted bentonite without $Ag_2O$ obtained in this study were similar to those in the compacted bentonite reported in the literature.

Heat Transfer by Heat Generation in Electrochemical Reaction of PEMFC (고분자 전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Han, Sang-Seok;Lee, Pil-Hyong;Lee, Jae-Young;Park, Chang-Soo;Hwang, Sang-Soon
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.273-283
    • /
    • 2008
  • GDL(Gas Diffusion Layer) is one of the main components of PEM fuel cell. It transports reactants from the channel to the catalyst and removes reaction products from the catalyst to the channels in the flow filed plate. It is known that higher permeability of GDL can make it possible to enhance the gas transport through GDL, leading to better performance. And MEA's temperature is determined by gas and heat transport. In this paper, three dimensional numerical simulation of PEM fuel cell of parallel channel and serpentine channel by the permeability of GDL is presented to analysis heat and mass transfer characteristics using a FLUENT modified to include the electrochemical behavior. Results show that in the case of parallel channel, performance variation with change of permeability of GDL was not so much. This is thought because mass transfer is carried out by diffusion mechanism in parallel channel. Also, in the case of serpentine channel, higher GDL permeability resulted in better performance of PEM fuel cell because of convection flow though GDL. And mass transfer process is changed from convection to diffusion when the permeability becomes low.

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Comparative Study on the Transport Characteristics of Canalicular Liver Plasma Membrane Vesicles Prepared by Two Different Methods (제조 방법에 따른 간 모세담관막 소포계의 수송 특성 비교)

  • Song, Im-Sook;Chung, Suk-Jae;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • Canalicular liver plasma membrane vesicles (cLPM) were prepared according to two different methods (Inoue method and Meier method), and were evaluated for their protein yield, enzyme activity and transport characteristics. No difference was found between the methods in the protein yield (i.e., $0.14{\pm}0.031$ and $0.15{\pm}0.050$ mglg liver for Inoue method and Meier method, respectively). The activity of alkaline phosphatase, a marker enzyme of canalicular membrane, was significantly (P<0.05) higher in the vesicles of Meier method $(3.52{\pm}0.91\;mmol/mg/hr)$than in the vesicles of Inoue method ($2.28{\pm}0.94$ mmol/mg/hr) indicating that more purified cLPM were obtained from Meier method compared with Inoue method. ATP-dependent vesicular uptake of taurocholate and tributylmethylammonium (TBuMA) was observed for vesicles of both methods, and the kinetic parameters responsible for the transport were similar between the vesicles of both methods (for example, $V_{max}:$ 9.72 nmol/mg protein/30sec and $K_m:$ 0.63 mM for Inoue method; $V_{max}:$ 10.1 nmol/mg protein/30sec and $K_m:$ 0.70 mM for Meier method). A pH gradient dependent counter transport of TBuMA was also observed for both vesicles with similar kinetic characteristics. Either the uptake of taurocholate in the absence of ATP or that of TBuMA in the absence of pH gradient, which may represent passive diffusion of respective compound into the vesicles, was more rapid for the vesicles of Meier method than for the vesicles of Inoue method. For example, passive diffusion rate constants $(K_d)$ for TBuMA uptake into the vesicles were 0.00030 and 0.00052\;{\mu}l/mg$ protein/min for the vesicles of Inoue method and Meier method, respectively. It may indicate that more leaky vesicles are obtained form the Meier method compared with the Inoue method. These aspects together with the time necessary to prepare the vesicles (i.e., 8 hr for Inoue method and 23 hr for Meier method) should be considered before selecting an appropriate method for the preparation of cLPM.

  • PDF

On the Seasonal Transports of Freshwater and Salt in the Tropical Atlantic Ocean (열대 대서양에서의 계절별 담수 및 염분의 수송)

  • Jung-Moon Yoo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.1.1-15
    • /
    • 1994
  • The transports of the seasonal freshwater and salt from surface to 500 m depth in the tropical Atlantic Ocean are derived from the equations of the continuity and saltconservation, respectively. The freshwater transport is obtained by southward integration of the divergence of surface freshwater flux, using climatological freshwater(i. e. precipitation, evaporation, and river discharge) data. The annual freshwater transport is northward, ranging from 0 Sv near the equator to 0.3 Sv at $12^{\circ}{\;}N{\;}and{\;}20^{\circ}{\;}S$. The seasonal meridional transport amounts of freshwater range from 1.35 Sv to-0.45 Sv. The strong northward freshwater transports prevail for the intraseasonal period summer to fall. This seasonal cycle is caused by the shifts of the ITCZ as well as the changes in the local freshwater storage. Annual and seasonal salt transports are calculated from objectively analyzed historical (1900-86) salinity observations. The annual salt flux in the ocean zero, showing that the salt flux by horizontal advection balances the flux by horizontal diffusion. The salt flux due to the diffusion is northward, and has a maximum of $5{\;}{\times}{\;}10^6kg/s$ at 15oN. Seasonal transport amounts of salt range from $30{\;}{\times}{\;}10^6kg/s{\;}to{\;}-35{\;}{\times}10^6kg/s$. The direction of the seasonal salt transports is northward except for the intraseasonal period summer to fall.

  • PDF

Radionuclide Diffusion in Compacted Domestic Bentonite (압축 국산 벤토나이트 내에서 방사성 핵종의 확산이동)

  • Choi, Jong-Won;Lee, Byung-Hun
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.27-39
    • /
    • 1991
  • The diffusion of Sr-85, Cs-137, Co-60 and Am-241 in compacted domestic bentonite was studied, using a diffusion cell unit in which diffusion took place axially from the center of cylindrical bentonite sample body. The effects of compaction density and heat-treated bentonite on diffusion were analysed. And the diffusion mechanism of radionuclide was also analysed by evaluating the measured diffusivity of anion Cl-36. The apparent diffusivities obtained for Sr-85, Cs-137, Co-60 and Am-241 were $l.07{\times}10^{-11},\;6.705{\times}10^{-13},\;l.226{\times}10^{-13}\;and\; l.310{\times}10^{-14}m^2/sec$, respectively. When the as-pressed density of bentonite increased from $1.8\;to\;2.0g/cm^3$, the apparent diffusivity of Cs-137 decreased by quarter. In the case of bentonite heat-treated to $150^{\circ}C$, no significant change in diffusivity was observed, which showed the possibility that the domestic bentonite could be used as a chemical barrier to retard the radionuclide migration at below $150^{\circ}C$. From the calculated pore and surface diffusivity, the surface diffusion due to the concentration gradient of radionuclide sorbed on the solid phase was found to dominate greatly in total transport process.

  • PDF

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.