DOI QR코드

DOI QR Code

Heat Transfer by Heat Generation in Electrochemical Reaction of PEMFC

고분자 전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성

  • Published : 2008.11.30

Abstract

GDL(Gas Diffusion Layer) is one of the main components of PEM fuel cell. It transports reactants from the channel to the catalyst and removes reaction products from the catalyst to the channels in the flow filed plate. It is known that higher permeability of GDL can make it possible to enhance the gas transport through GDL, leading to better performance. And MEA's temperature is determined by gas and heat transport. In this paper, three dimensional numerical simulation of PEM fuel cell of parallel channel and serpentine channel by the permeability of GDL is presented to analysis heat and mass transfer characteristics using a FLUENT modified to include the electrochemical behavior. Results show that in the case of parallel channel, performance variation with change of permeability of GDL was not so much. This is thought because mass transfer is carried out by diffusion mechanism in parallel channel. Also, in the case of serpentine channel, higher GDL permeability resulted in better performance of PEM fuel cell because of convection flow though GDL. And mass transfer process is changed from convection to diffusion when the permeability becomes low.

고분자 전해질 연료전지의 구성요소인 기체 확산층(Gas Diffusion Layer)은 반응물을 채널에서 MEA로 전달하며 동시에 생성물을 MEA에서 채널로 전달하는 역할을 한다. 기체 확산층의 기체 투과도가 클수록 기체 확산층을 통과하는 반응기체의 양이 증가하여 고분자전해질 연료전지 성능이 향상되며 물질전달과 함께 열전달이 이루어지기 때문에 생성열에 의한 MEA의 온도상승을 억제해준다. 본 연구에서는 기체 확산층의 기체투과도를 달리하여 전기화학 반응과 열 생성을 고려한 3차원 수치해석 모델을 통해 동일 반응면적을 가지는 직선형 채널과 곡사형 채널에 대해 열전달 및 물질전달 특성을 분석하였다. 수치해석 결과 직선형 채널의 경우 곡사형 채널에 비해 기체 확산층의 기체투과도에 따른 성능 변화가 크지 않았다. 이러한 이유는 직선형 채널에서 주된 물질전달은 확산에 의해 이뤄지기 때문이다. 곡사형 채널의 경우 기체투과도가 높을수록 대류에 의한 물질전달로 원활한 물질전달이 이뤄졌기 때문에 연료전지 성능이 증가 되었으며 원활한 물질전달이 열전달을 촉진하여 MEA의 온도를 낮추었다. 또한 곡사형 채널에서는 기체투과도가 작아질수록 확산에 의한 물질 및 열전달 특성을 보여주었다.

Keywords

References

  1. A. Kazim, H. T. Liu, and P. Forges, 'Modeling of Performance of PEM Fuel Cells With Conventional and Interdigitated Flow Fields', J. Appl. Electrochem., 29, 1409 (1999) https://doi.org/10.1023/A:1003867012551
  2. H. Wu, Berg, and Li, 'Non-isothermal Transient Modeling of Water Transport in PEM fuel Cells', J. Power Soc., 165, 232 (2007) https://doi.org/10.1016/j.jpowsour.2006.11.061
  3. S. A. Cho, P. H. Lee, S. S. Han, and S. S. Hwang, 'Heat Transport Characteristics of Flow Fields in Proton Exchange Membrane Fuel Cells', J. Power Soc., 178, 692 (2008) https://doi.org/10.1016/j.jpowsour.2007.09.057
  4. P. H. Lee, S. A. Cho, S. S. Han, and S. S. Hwang, 'Performance Characteristics of Proton Exchange Membrane Fuel Cell (PEMFC) With Interdigitated Flow Channel', International J. Automotive Technology, 8, 761 (2007)
  5. J.-H. Jang, W.-M. Yan, and C.-C. Shih, 'Effects of the Gas Diffusion-layer Parameters on Cell Performance of PEM Fuel Cells', J. power Soc., 161, 323 (2006) https://doi.org/10.1016/j.jpowsour.2006.03.089
  6. Z. Zhana, J. Xiao, D. Li, M. Pana, and R. Yuan, 'Effects of Porosity Distribution Variation on the lIquid Water Flux Through Gas Diffusion Layers of PEM Fuel Cells', J. power Soc., 160, 1041 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.060
  7. T. Berning and N. Djilali, 'Three-dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell-a Parametric Study', J. Power Soc., 124, 440 (2003) https://doi.org/10.1016/S0378-7753(03)00816-4
  8. D. M. Bernardi and M. W. Verdrugge, 'A Mathematical Model of the Solid-polymer Electrolyte Fuel Cell', J. Electrochem. Soc., 139, 2477 (1992) https://doi.org/10.1149/1.2221251
  9. J. G. Pharoah, 'On the Permeability of Gas Diffusion Media Used in PEM Fuel Cells', J. Power Soc., 144, 77 (2005) https://doi.org/10.1016/j.jpowsour.2004.11.069
  10. T. V. Nguyen and R. E. White, 'A Water and Heat Management Model PEMFCs', J. electrochem. Soc., 140, 2178 (1993) https://doi.org/10.1149/1.2220792
  11. T. F. Fuller and J. Newman, 'Water and tHermal Management in Solid-polymer-electrolyte Fuel Cells', J. Electrochem. Soc., 140, 1218 (1993) https://doi.org/10.1149/1.2220960
  12. S. Shimpalee and S. Dutta, 'Numerical Prediction of Temperature Distribution in PEM Fuel Cells', Numerical Heat Transfer, Part A, 38, 111 (2000) https://doi.org/10.1080/10407780050135360
  13. H. Ju, C.-Y. Wang, S. Cleghorn, and U. Beuscherb, 'Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation', J. Electrochem. Soc., 152(8), A1645 (2005) https://doi.org/10.1149/1.1943591
  14. X. Li, Principles of Fuel Cells, Taylor & Francis, New York (2006)