• Title/Summary/Keyword: GDL

Search Result 157, Processing Time 0.036 seconds

Numerical Study on the Effect of Gas Diffusion Layer (GDL) Properties in Cathode on the Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 연료전지내의 양극 기체확산층 물성 변화가 전지성능에 미치는 영향에 관한 전산해석 연구)

  • Chun, Jeong Hwan;Jo, Dong Hyun;Lee, Ji Young;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.556-561
    • /
    • 2012
  • In this study, the effect of properties of gas diffusion layer (GDL) on the performance of polymer electrolyte membrane fuel cell (PEMFC) was investigated using the numerical simulation. The multi-phase mixture ($M^2$) model was used to calculate liquid water saturation and oxygen concentration in GDL. GDL properties, which were contact angle, porosity, gas permeability and thickness, were changed to investigate the effect of GDL properties on the performance of PEMFC. The results demonstrated that performance of PEMFC was increased with increasing contact angle and porosity of GDL, but decreased with increasing thickness of GDL. The liquid water saturation was decreased but oxygen concentration was increased at the GDL-catalyst layer interface, because the mass transfer resistance decreased as the porosity and contact angle increased. On the other hands, as the thickness of GDL increased, pathway for liquid water and oxygen gas became longer, and then mass transfer resistance increased. For this reason, performance of PEMFC decreased with increasing thickness of GDL.

Nutritive Quality Evaluation of GDL Soybean Curds (GDL 두부의 품질 평가)

  • Kim, Sang-Ae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 1984
  • This research aims to increase the extent of utilization of soybean curds coagulated with $Glucono-{\delta}-lactone$ (GDL) as a protein soarce by analyzing nutritive guality and preference to them. The curds were made from two kinds of soybean, domestic and imported. The results were as follows; 1. The yield of the domestic soybean curd was higher than that of the imported. 2. The total nitrogen and amino acid content of the GDL soybean curd were higher in the do- mestic while lipid and ash were higher in the imported one. 3. Rheological properties such as hardness, toughness, springiness and chewiness were higher in the domestic soybean curds than those of tile imported. 4. The 'L' values of the GDL soybean curds were higher in the domestic. However, there were no significant differences in the 'a' and 'b' values between the domestic and the imported soybeans. 5. According to the organoleptic the GDL soybean curds were not so favorable to our preferences .

  • PDF

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC (마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구)

  • Woo, Ahyoung;Cha, Dowon;Kim, Bosung;Kim, Yongchan
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

Effect of Glucono Delta-lactone on the Quality of Cooked Rice (Glucono Delta-lactone의 첨가가 쌀밥의 품질에 미치는 영향)

  • Kim, Jae-Hun;Oh, Sang-Hee;Lee, Ju-Woon;Lee, Chang-Yong;Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.10
    • /
    • pp.1698-1702
    • /
    • 2004
  • The effects of glucono delta-lactone on the Quality of cooked rice were investigated. Cooked rice was prepared with the addition of acetic acid (AA) and glucono delta-lactone (GDL). Microbial population and textural properties were determinated during the storage periods at 3$0^{\circ}C$. The addition of AA and GDL above 0.1% was effective in the inhibition of bacterial growth for 72 hrs at 3$0^{\circ}C$. Lightness increased by addition of AA and GDL, but yellowness decreased. Hardness was significantly increased by adding AA and GDL, and also stickiness decreased by adding AA. Whereas, stickiness of cooked rice adding GDL increased significantly as the content of GDL increased. The present results confirmed that GDL was a useful food additive to extend the shelf-life and improve the Quality of cooked rice.

Analysis of Mass Transport in PEMFC GDL (연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구)

  • Jeong, Hee-Seok;Kim, Jeong-Ik;Lee, Seong-Ho;Lim, Cheol-Ho;Ahn, Byung-Ki;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.979-988
    • /
    • 2012
  • The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.

Effects of Added WPC and WP on the Quality and Shelf Life of Tofu (WPC 및 WP 첨가가 두부 품질 및 저장성에 미치는 영향)

  • Kim, Jong-Un;Song, Kwang-Young;Seo, Kun-Ho;Yoon, Yoh-Chang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.93-109
    • /
    • 2012
  • This study was performed to investigate the effects of added whey protein concentrates (WPC) and whey powder (WP) on the quality and shelf life of Tofu, a traditional food in Korea. Combined whey powder and whey protein concentrates were obtained at drainage after the casein was separated by using rennet enzyme or acidification of milk. We manufactured whey Tofu and evaluated its nutritional quality by testing, the general composition for yield, moisture, pH, crude protein, crude fat, carbohydrate, rheology, sensory properties, and change during storage. 1. The general compositions of WPC and WP were as follows: (a) WPC: moisture, 5.9%; crude protein, 56.2%; crude fat, 0.1%; carbohydrate, 32.6%; ash, 5.2%; and pH 5.93 and (b) WP: moisture, 3.7%; crude protein, 13.2%; crude fat, 1.6%; carbohydrate, 74.4%; ash, 7.1%; and pH, 6.65. 2. The yield of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest (265%) at $13.3g/cm^2$, but with 4% addition WP was the lowest (184%) at $22.2g/cm^2$. 3. The moisture content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL = 6:4 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=8:2 and (b) in WP, 2% addition was the highest at 79.82% ($13.3g/cm^2$), but 4% was the lowest at 75.18% ($22.2g/cm^2$). 4. The pH of Tofu was as follows: (a) in WPC, the value was WPC 6% > WPC 4% > WPC 2% > control and $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=7:3 and (b) in WP, WP 4% > WP 2% > control. 5. The ash content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, there was no difference between 2% and 4% addition. 6. The crude protein content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, there was no difference between 2% and 4% addition. 7. The crude fat content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=9:1 > $CaCl_2$:GDL=6:4 and (b) in WP, values decreased with increasing pressed weight. 8. The carbohydrate content of Tofu was as follows: (a) in WPC, the content was $CaCl_2$:GDL=8:2 > $CaCl_2$:GDL=7:3 > $CaCl_2$:GDL=6:4 > $CaCl_2$:GDL=9:1 and (b) in WP, values increased with increasing pressed weight. 9. The rheology test results of Tofu were as follows: (a) in WPC, hardness and brittleness was highest with $CaCl_2$:GDL=8:2 and 6% added WPC. Cohesiveness was highest with $CaCl_2$:GDL=6:4 and 2% added WPC. Elasticity was the highest with $CaCl_2$:GDL=7:3 and the added WPC control. (b) in WP, hardness was the highest with $22.2g/cm^2$ and added WP control. Cohesiveness was the highest with $17.8g/cm^2$ and added WP 2%. Elasticity was the highest with $17.8g/cm^2$ and added WP 4%. Brittleness was the highest with $17.8g/cm^2$ and added WP control. 10. The sensory test results of Tofu were as follows: (a) in WPC, the texture, flavor, color, and smell were the highest with $CaCl_2$:GDL=6:4 and 6% added WPC. (b) in WP, the texture was the highest in the control with $22.2g/cm^2$. Flavor and smell were the highest in WP 2% and $22.2g/cm^2$. Color was the highest in WP 2% and $17.8g/cm^2$. 11. The quality change of Tofu during storage was as follows: (a) in WPC, after 60 h, all samples began to get spoiled and their color changed, and mold began to germinate. (b) in WP, the result was similar, but the rate of spoilage was more rapid than that in the control.

  • PDF

Analysis of Degradation of Durability of the GDL with Various MPL Penetration Levels (MPL 침투깊이에 따른 GDL 내구성능 저하 특성 분석에 관한 연구)

  • Park, Jaeman;Cho, Junhyun;Ha, Taehun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.77.1-77.1
    • /
    • 2010
  • Durability problems of gas diffusion layer(GDL) is one of the important issues for accomplishing commercialization of proton exchange membrane fuel cell(PEMFC). GDL is strongly related to the performance of PEMFC because one of the main function of GDL is to work as a path of fuel, air and water. When the GDL is degraded, it causes water balance problems such as the flooding phenomenon. Thus, investigating the durability characteristics of the GDL is important and understanding the GDL degradation process is needed. In this study, the GDLs are degraded by carbon corrosion stress method which is the electrochemical degradation mode. To determine the effects of carbon corrosion of the GDL, 1.45 V of potential is imposed for 96 hours. In this manner, in the previous research, the structure between the substrate and the MPL is weaken. Further investigations are needed to clarify this phenomenon. Therefore, in this study, the carbon corrosion stress method is carried out with GDLs which have various MPL penetration levels and the effects of the MPL penetration level on the characteristics change of the GDL are analyzed. The changes in characteristics are measured with various properties of GDL such as weight, thickness and static contact angle. The degraded GDL shows loss of their properties.

  • PDF

Experimental Study on Carbon Corrosion of Gas Diffusion Layer in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 탄소 부식에 관한 실험적 분석)

  • Ha, Taehun;Cho, Junhyun;Park, Jaeman;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.76.1-76.1
    • /
    • 2010
  • Recently, many efforts to solve the durability problem of PEM fuel cell are carried on constantly. However, despite this attention, durability researches of gas diffusion layer (GDL) are not much reported yet. Generally, GDL of PEM fuel cell experiences three external attacks, which are dissolution of water, erosion of gas flow, corrosion of electric potential. In this study, among these degradation factors, carbon corrosion of electric potential was focused and investigated with accelerated carbon corrosion test. Through the test, it is confirmed that carbon corrosion occurred at GDL, and corroded GDL decreased a performance of operating fuel cell. The property changes of GDL were measured with various methods such as air permeability meter, pore distribution analyzer, thermo gravimetric analyzer, and tensile stress test to discover the effects of carbon corrosion. Carbon corrosion caused not only loss of weight and thickness, but also degradation of mechanical strength of GDL. In addition, to analysis the reason of GDL property changes, a surface and a cross section of GDL were observed with scanning electron microscope. After 100 hours test, the GDL showed serious damage in center of layer.

  • PDF

Mass Transfer and Heat Transfer Characteristics of PEM fuel cell by Permeability of GDL (GDL Permeability에 따른 고분자 전해질 연료전지의 물질전달 및 열전달 특성에 관한 연구)

  • Han, Sang-Seok;Lee, Pil-Hyong;Park, Chang-Soo;Lee, Jae-Young;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2822-2827
    • /
    • 2008
  • Among the main components of PEM fuel cell, the functions of GDL are to transport reactants from the channel to the catalyst and remove reaction products from the catalyst and transport heat from the catalyst to the channels in the flow filed plate. Permeability of GDL is known to make it possible to enhance the gas transport through GDL, devoting to get better performance. In this paper, three dimensional numerical simulation of the fuel cell by the permeability of GDL is presented by using a FLUENT modified to include the electrochemical behavior. Results show that as permeability is higher than $10^{-12}m^2$, gradients of temperature distribution, oxygen molar concentration and current density distribution in MEA were decreased. Although heat generation was increased as high permeability, MEA's temperature was lower than the low permeability of GDL. This seems because that convection was higher affects in mass and heat transfer process than diffusion as permeability of GDL is increases.

  • PDF

Retardation of Kimchi Fermentation by Addition of Glucono-δ-lacton (글루코노델타락톤의 김치 발효 지연 효과)

  • 한진숙;강준수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.3
    • /
    • pp.553-559
    • /
    • 2004
  • This study was carried out to estimate the effects of glucono-$\delta$-lacton (GDL) on prolongation of shelf-life on Kimchi. Final concentration of added GDL was determined 0.3% according to the result of sensory evaluation. Chemical characteristics and microbiological parameters were monitored during fermentation at 1$0^{\circ}C$. GDL Kimchi showed the initial sharp decrease in pH and gradually increase of pH due to osmotic pressure and then the pH of GDL Kimchi was slowly decreased compared with that of control Kimchi during fermentation. The acidity of control Kimchi was markedly increased around pH 4.5 by growth of microorganism. Otherwise, GDL Kimchi showed that t]le formation of organic acids was slow and little amount compared with that of control Kimchi. HPLC analysis showed oxalic acid, lactic acid, acetic acid, malic acid and succinic acid appeared by fermentation. The production of lactic acid changed a lot in control Kimchi, where as little in GDL Kimchi. Growth of L. mesenteroides at initial stage of Kimchi fermentation was remarkably inhibited by adding 0.3% GDL. It retarded also the growth of L. Plantarum and L. breuis at late stage of Kimchi fermantation and led to reduce the softening of texture and retard over ripening of Kimchi. Tn sensory evaluation of Kimchi, GDL Kimchi showed the similar characteristics to the control Kimchi. This result suggested that GDL can be successfully used for the prolongation of shelf-life and sensory evaluation on Kimchi.