DOI QR코드

DOI QR Code

Numerical Simulation of Water Transport in a Gas Diffusion Layer with Microchannels in PEMFC

마이크로채널이 적용된 고분자 전해질 연료전지 가스확산층의 물 이송에 대한 전산해석 연구

  • Woo, Ahyoung (Department of Mechanical Engineering, Korea Univ.) ;
  • Cha, Dowon (Department of Mechanical Engineering, Korea Univ.) ;
  • Kim, Bosung (Department of Mechanical Engineering, Korea Univ.) ;
  • Kim, Yongchan (Department of Mechanical Engineering, Korea Univ.)
  • Received : 2012.07.31
  • Accepted : 2013.02.27
  • Published : 2013.02.28

Abstract

The water management is one of the key issues in low operating temperature proton exchange membrane fuel cells (PEMFCs). The gas diffusion layer (GDL) allows the reactant gases flow to the reaction sites of the catalyst layer (CL). At high current density, generated water forms droplets because the normal operating temperature is $60{\sim}80^{\circ}C$. If liquid water is not evacuated properly, the pores in the GDL will be blocked and the performance will be reduced severely. In this study, the microchannel GDL was proposed to solve the flooding problem. The liquid water transport through 3-D constructed conventional GDL and microchannel GDL was analyzed varying air velocity, water velocity, and contact angle. The simulation results showed that the liquid water was evacuated rapidly through the microchannel GDL because of the lower flow resistance. Therefore, the microchannel GDL was efficient to remove liquid water in the GDL and gas channels.

물 관리는 저온에서 작동하는 고분자전해질 연료전지의 성능에 큰 영향을 미친다. 가스확산층(gas diffusion layer, GDL)은 반응 가스를 촉매층의 반응영역으로 확산시키는 역할을 한다. 연료전지의 작동온도가 $60{\sim}80^{\circ}C$이기때문에, 고전류 밀도에서 생성된 물은 액적을 형성한다. 만약 생성된 물이 적절하게 제거되지 않는다면, GDL 내의 기공을 막게 되고 연료전지 성능이 저하된다. 본 연구에서는 플러딩 현상을 막기 위해 마이크로채널 GDL 을 제안하였다. 기존 GDL과 마이크로채널 GDL을 3차원으로 구현하여 공기 속도, 물속도, 접촉각의 변화에 따른 물의 이송을 연구하였다. 전산해석 결과를 통해 마이크로채널 GDL에서는 낮은 유동 저항으로 인해 물이 빠르게 제거되는 것으로 나타났다. 그러므로, 마이크로채널 GDL이 가스채널과 GDL 내부의 물 제거에 효율적임을 알 수 있다.

Keywords

References

  1. H. Kim and S. Na, New Renewable Energy and Fuel Cell, Haksul Intelligence, Seoul (2006).
  2. R. Wu, X. Zhu, Q. Liao, H. Wang, Y. Ding, J. Li and D. Ye, 'A pore network study on water distribution in bilayer gas diffusion media: Effects of inlet boundary condition and micro-porous layer properties', J. Power Sources, 35, 9134 (2010).
  3. K. Lee, J. H. Kang, J. H. Nam and C. Kim, 'Steady liquid water saturation distribution in hydrophobic gasdiffusion layers with engineered pore paths: An invasionpercolation pore-network analysis', J. Power Sources, 195, 3508 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.141
  4. K. Jiao and B. Zhou, 'Innovative gas diffusion layers and their water removal characteristics in PEM fuel cell cathode', J. Power Sources, 169, 296 (2007). https://doi.org/10.1016/j.jpowsour.2007.03.042
  5. S. Litster, D. Sinton and N. Djilali, 'Ex situ visualization of liquid water transport in PEM fuel cell gas diffusion layers', J. Power Sources, 154, 95 (2006). https://doi.org/10.1016/j.jpowsour.2005.03.199
  6. C. W. Hirt and B. D. Nichols, 'Volume of fluid (VOF) method for the dynamics of free boundaries', J. Computational Physics, 39, 201 (1981). https://doi.org/10.1016/0021-9991(81)90145-5
  7. Y. Ding, H. T. Bi and D. P. Wilkinson, 'Threedimensional numerical simulation of water droplet emerging from a gas diffusion layer surface in microchannels', J. Power Sources, 195, 7278 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.059
  8. X. Zhu, P. C. Sui, and N. Djilali, 'Numerical investigation of water droplet dynamics in a lowtemperature fuel cell microchannel: Effect of channel geometry', J. Power Sources, 195, 801 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.021
  9. Y. L. He, Z. Miao, T. S. Zhao and W. W. Yang, 'Numerical study of the effect of the GDL structure on water crossover in a direct methanol fuel cell', Int. J. Hydrogen Energy, 37, 4422 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.102

Cited by

  1. Study on Power Characteristics in the PEMFC Parallel Channel with Baffles through Numerical Analysis vol.17, pp.3, 2014, https://doi.org/10.5229/JKES.2014.17.3.193