• 제목/요약/키워드: transparent thin film transistor

검색결과 88건 처리시간 0.029초

투명 유연 박막 트랜지스터의 구현을 위한 열처리된 산화아연 박막의 전사방법 개발 (Transfer of Heat-treated ZnO Thin-film Plastic Substrates for Transparent and Flexible Thin-film Transistors)

  • 권순열;정동건;최영찬;이재용;공성호
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.182-185
    • /
    • 2018
  • Zinc oxide (ZnO) thin films have the advantages of growing at a low temperature and obtaining high charge mobility (carrier mobility) [1]. Furthermore, the zinc oxide thin film can be used to control application resistance depending on its oxygen content. ZnO has the desired physical properties, a transparent nature, with a flexible display that makes it ideal for use as a thin-film transistor. Though these transparent flexible thin-film transistors can be manufactured in various manners, manufacturing large-area transistors using a solution process is easier owing to the low cost and flexible substrate. The advantage of being able to process at low temperatures has been attracting attention as a preferred method. However, in the case of a thin-film transistor fabricated through a solution process, it is reported that charge mobility is lower. To improve upon this, a method of improving the crystallinity through heat treatment and increasing electron mobility has been reported. However, as the heat treatment temperature is relatively high at $500^{\circ}C$, an application where a flexible substrate is absent would be more suitable.

Bottom Gate Microcrystalline Silicon TFT Fabricated on Plasma Treated Silicon Nitride

  • Huang, Jung-Jie;Chen, Yung-Pei;Lin, Hung-Chien;Yao, Hsiao-Chiang;Lee, Cheng-Chung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.218-221
    • /
    • 2008
  • Bottom-gate microcrystalline silicon thin film transistors (${\mu}c$-Si:H TFTs) were fabricated on glass and transparent polyimide substrates by conventional 13.56 MHz RF plasma enhanced chemical vapor deposition at $200^{\circ}C$. The deposition rate of the ${\mu}c$-Si:H film is 24 nm/min and the amorphous incubation layer near the ${\mu}c$-Si:H/silicon nitride interface is unobvious. The threshold voltage of ${\mu}c$-Si:H TFTs can be improved by $H_2$ or $NH_3$ plasma pretreatment silicon nitride film.

  • PDF

투명 ZnO를 활성 채널층으로 하는 박막 트랜지스터 (Thin Film Transistor with Transparent ZnO as active channel layer)

  • 신백균
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권1호
    • /
    • pp.26-29
    • /
    • 2006
  • Transparent ZnO thin films were prepared by KrF pulsed laser deposition (PLD) technique and applied to a bottom-gate type thin film transistor device as an active channel layer. A high conductive crystalline Si substrate was used as an metal-like bottom gate and SiN insulating layer was then deposited by LPCVD(low pressure chemical vapour deposition). An aluminum layer was then vacuum evaporated and patterned to form a source/drain metal contact. Oxygen partial pressure and substrate temperature were varied during the ZnO PLD deposition process and their influence on the thin film properties were investigated by X-ray diffraction(XRD) and Hall-van der Pauw method. Optical transparency of the ZnO thin film was analyzed by UV-visible phometer. The resulting ZnO-TFT devices showed an on-off ration of $10^6$ and field effect mobility of 2.4-6.1 $cm^2/V{\cdot}s$.

High-Performance, Fully-Transparent and Top-Gated Oxide Thin-Film Transistor with High-k Gate Dielectric

  • Hwang, Yeong-Hyeon;Cho, Won-Ju
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2014
  • High-performance, fully-transparent, and top-gated oxide thin-film transistor (TFT) was successfully fabricated with Ta2O5 high-k gate dielectric on a glass substrate. Through a self-passivation with the gate dielectric and top electrode, the top-gated oxide TFT was not affected from H2O and O2 causing the electrical instability. Heat-treated InSnO (ITO) was used as the top and source/drain electrode with a low resistance and a transparent property in visible region. A InGaZnO (IGZO) thin-film was used as a active channel with a broad optical bandgap of 3.72 eV and transparent property. In addition, using a X-ray diffraction, amorphous phase of IGZO thin-film was observed until it was heat-treated at 500 oC. The fabricated device was demonstrated that an applied electric field efficiently controlled electron transfer in the IGZO active channel using the Ta2O5 gate dielectric. With the transparent ITO electrodes and IGZO active channel, the fabricated oxide TFT on a glass substrate showed optical transparency and high carrier mobility. These results expected that the top-gated oxide TFT with the high-k gate dielectric accelerates the realization of presence of fully-transparent electronics.

  • PDF

Characterization of ZnO for Transparent Thin Film Transistor by Injection Type Delivery System of ALD

  • Choi, Woon-Seop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.860-863
    • /
    • 2007
  • ZnO nano film for transparent thin film transistors is prepared by injection type source delivery system of atomic layer deposition. By using this delivery system the source delivery pulse time can dramatically be reduced to 0.005s in ALD system. ZnO nanofilms obtained at $150^{\circ}C$ are characterized.

  • PDF

RF magnetron sputtering법으로 형성된 ZnO 박막의 투명반도체 특성 (The Transparent Semiconductor Characteristics of ZnO Thin Films Fabricated by the RF Magnetron Sputtering Method)

  • 김종욱;황창수;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.29-33
    • /
    • 2010
  • Recently, the growth of ZnO thin film on glass substrate has been investigated extensively for transparent thin film transistor. We have studied the phase transition of ZnO thin films from metal to semiconductor by changing RF power in the deposition process by RF magnetron sputtering system. The structural, electric, and optical properties of the ZnO thin films were investigated. The film deposited with 75 watt of RF power showed n-type semiconductor characteristic having suitable resistivity $-3.56\;{\times}\;10^{+1}\;{\Omega}cm$, carrier concentration $-2.8\;{\times}\;10^{17}\;cm^{-3}$, and mobility $-0.613\;cm^2V^{-1}s^{-1}$ while other films by 25, 50, 100 watt of RF power closed to metallic films. From the surface analysis (AFM), the number of crystal grain of ZnO thin film increased as RF power increased. The transmittance of the film was over 88% in the visible region regardless of the change in RF power.

용액공정을 이용한 열처리된 산화아연 박막의 투명한 박막 트랜지스터 구현을 위한 전사방법 개발 (Development of Transfer Method for Transparent Thin Film Transistor of Heat-treated Zinc Oxide Thin Film by Solution Process)

  • 권순열;정동건;최영찬;이재용;공성호
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.57-60
    • /
    • 2018
  • Recently, Thin-film transistors (TFTs) are fundamental building blocks for state-of-the-art microelectronics, such as flat-panel displays and system-on-glass. Zinc oxide thin films have the advantage that they can grow at low temperature and can obtain high charge movility. Also the zinc oxide thin film can be used to control the resistance according to the oxygen content, so it is very easy to obtain the desired physical properties. In this paper, we fabricated a zinc oxide thin film on a polished copper substrate through a solution process, then improved the crystallinity through a geat treatment porcess, and studied to transfer it on a flexible substrate after the heat treatment was completed.

Transparent ZnO based thin film transistors fabricated at room temperature with high-k dielectric $Gd_2O_3$ gate insulators

  • Tsai, Jung-Ruey;Li, Chi-Shiau;Tsai, Shang-Yu;Chen, Jyun-Ning;Chien, Po-Hsiu;Feng, Wen-Sheng;Liu, Kou-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.374-377
    • /
    • 2009
  • The characteristics of the deposited thin films of the zinc oxide (ZnO) at different oxygen pressures will be elucidated in this work. The resistivity of ZnO thin films were dominated by the carrier concentration under high oxygen pressure conditions while controlled by the carrier mobility at low oxygen ambiences. In addition, we will show the characteristics of the transparent ZnO based thin film transistor (TFT) fabricated at a full room temperature process with gate dielectric of gadolinium oxide ($Gd_2O_3$) thin films.

  • PDF