• 제목/요약/키워드: transparent electrode film

검색결과 250건 처리시간 0.026초

차세대 플렉서블 태양전지 생산용 롤프린팅 공정장비 기술 개발 (Development of Roll Printing Process System for The Next Generation Flexible Solar Cell)

  • 김동수;김정수;김명섭;김강대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2009
  • The conductive coating method was used for a various industrial fields. For example, Sputtering process is using to a coat of ITO layer in LCD or OLED panel manufacture process and fabricate a base layer of substrate of an electric printing device. However, conventional coating process (beam sputtering, spin coating etc.) has a problems in the industrial manufacturing process. These processes have a very high cost and critical manufacturing environment as a vacuum process. Recently, many researchers were proposed a various printing process instead of conventional coating process. In this paper, we propose an ESD printing process in ITO coating layer and apply to fabricate a conductive coating film. Ours transparent electrode had a surface resistance of about $66{\Omega}/{\square}$ and transparent of 74% in the wavelength of 500nm. This transparent electrode manufacturing process will be applied to Roll-to-Roll process. In addition, we developed roll printing process system for the next generation flexible solar cell.

  • PDF

유연전자소자를 위한 차세대 유연 투명전극의 개발 동향 (Technology of Flexible Transparent Conductive Electrode for Flexible Electronic Devices)

  • 김주현;천민우;좌성훈
    • 마이크로전자및패키징학회지
    • /
    • 제21권2호
    • /
    • pp.1-11
    • /
    • 2014
  • Flexible transparent conductive electrodes (TCEs) have recently attracted a great deal of attention owing to rapid advances in flexible electronic devices, such as flexible displays, flexible photovoltanics, and e-papers. As the performance and reliability of flexible electronics are critically affected by the quality of TCE films, it is imperative to develop TCE films with low resistivity and high transparency as well as high flexibility. Indium tin oxide (ITO) has been the most dominant transparent conducting material due to its high optical transparency and electrical conductivity. However, ITO is susceptible to cracking and delamination when it is bent or deformed. Therefore, various types of flexible TCEs, such as carbon nanotube, conducting polymers, graphene, metal mesh, Ag nanowires (NWs), and metal mesh have been extensively investigated. Among several options to replace ITO film, Ag NWs and metal mesh have been suggested as the promising candidate for flexible TCEs. In this paper, we focused on Ag NWs and metal mesh, and summarized the current development status of Ag NWs and metal mesh. The several critical issues such as high contact resistance and haze are discussed, and newly developed technologies to resolve these issues are also presented. In particular, the flexibility and durability of Ag NWs and metal mesh was compared with ITO electrode.

저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구 (Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition)

  • 김기철;송근수;김형태;유경훈;강정진;황준영;이상호;강경태;강희석;조영준
    • 대한기계학회논문집B
    • /
    • 제37권6호
    • /
    • pp.577-582
    • /
    • 2013
  • AZO(Aluminium-doped Zinc Oxide)는 기존의 LCD, OLED, 광센서, 유기태양전지 등의 투명전극에 널리 사용되는 ITO(Indium Tin Oxide)를 대체하기 위한 물질로 주목받고 있다. 본 연구에서는 유기태양전지의 투명 전극으로 많이 사용되는 ITO 를 대체하기 위해 원자층 증착(ALD) 공정의 저온 선택적 증착 특성을 이용하여 유연성 폴리머인 PEN 기판상에 AZO 투명전극을 직접 패턴방식으로 제조하고, 그 투명전극의 구조적, 전기적, 광학적 특성을 평가하였다. 전기적, 광학적 특성 결과들로부터 원자층 증작공정의 저온 선택적 증착 특성을 통해 형성된 AZO 투명전극의 유기태양전지로의 적용 가능성을 확인할 수 있었다.

Textured-AZO/AZO/Glass 투명전극을 갖는 염료감응 태양전지의 광전변환 특성 (Photoelectric Conversion Properties of Dye-sensitized Solar Cell in the Transparent Electrode of Textured-AZO/AZO/Glass)

  • 서빙;박춘배;황근창
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.37-43
    • /
    • 2012
  • We were studied that AZO conductive thin film can substitute for FTO electrode in dye sensitized solar cell. Three types of AZO films were deposited on soda-lime glass(AZO/glass, AZO/AZO/glass, textured AZO/AZO/glass) using RF magnetron sputtering process and investigated their properties of electrical, optical, and photoelectric conversion rate. The textured AZO/AZO/glass has the lowest resistivity of $3.079{\times}10^{-4}\;{\Omega}cm$ among other films. And the optical transmittance rate was better than both non textured AZO/AZO/glass and FTO/glass in the visible region. After manufacturing dye solar cells using the three types of AZO films, the textured AZO/AZO/glass showed the highest photoelectric conversion rate of 3.68% among AZO samples. But the transformation rate was slightly lower than FTO cells (4.52%). However, the conductive film of textured AZO/AZO/glass can be applicable to use an electrode in solar cells as cost-effective products.

Shear-coating을 사용한 은 나노와이어 투명 전극 제조 및 특성 분석 (Preparation and characterization of silver nanowire transparent electrodes using shear-coating)

  • 조경수;홍기하;박준식;정중희
    • 한국표면공학회지
    • /
    • 제53권4호
    • /
    • pp.182-189
    • /
    • 2020
  • Indium tin oxide (ITO) used a transparent electrode of a photoelectric device has a low sheet resistance and a high transmittance. However, ITO is disadvantageous in that the process cost is expensive, and the process time is long. Silver nanowires (AgNWs) transparent electrodes are based on a low cost solution process. In addition, it has attracted attention as a next-generation transparent electrode material that replaces ITO because it has similar electrical and optical characteristic to ITO, it is noted as a. AgNW thin films are mainly produced by spin-coating. However, the spin-coating process has a disadvantage of high material loss. In this study, the material loss was reduced by using about 2~10 ㎕ of AgNW solution on a (25 × 25) ㎟ substrate using the shear-coating method. It was also possible to align AgNWs in the drag direction by dragging the meniscus of the solution. The electro-optical properties of the AgNW thin film were adjusted by changing the experimental parameters that the amount of AgNWs suspension, the gap between the substrate and the blade, and the coating speed. As a result, AgNW thin films with a transmittance of 90.7 % at a wavelength of 550 nm and a sheet resistance of 15 Ω/□ was deposited and exhibited similar properties to similar AgNW transparent electrodes studied by other researchers.

AZO Anode 전극을 적용한 OLED 소자의 제작과 전기적.광학적 특성 분석 (Analysis on the Electrical.optical Properties and fabrication of OLED with AZO Anode Electrode)

  • 진은미;신은철;김태완;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제20권4호
    • /
    • pp.357-362
    • /
    • 2007
  • AZO(Aluminum-doped Zinc Oxide) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with ITO(Indium Tin Oxide). AZO films have been deposited on glass (corning 1737) substrates by RF magnetron sputtering. The AZO film was post-annealed at $600^{\circ}C$ for 2 hr with $N_2$ atmosphere. The AZO films were used as an anode contact to fabricate OLEDs(Organic Light Emitting Diodes). OLEDs with $AZO/TPD/Alq_3/Al$ configuration were fabricated by thermal evaporation. We investigated that the electric, structural and optical properties of AZO thin films, which measured using the methods of XRD, SEM, Hall measurement and Spectrophotometer. The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO devices fabricated under the same conditions.

Self-textured Al-doped ZnO transparent conducting oxide for p-i-n a-Si:H thin film solar cell

  • 김도영;이준신;김형준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.50.1-50.1
    • /
    • 2009
  • Transparent conductive oxides (TCOs) play an important role in thin-film solar cells in terms of low cost and performance improvement. Al-doped ZnO (AZO) is a very promising material for thin-film solar cellfabrication because of the wide availability of its constituent raw materials and its low cost. In this study, AZO films were prepared by low pressurechemical vapor deposition (LPCVD) using trimethylaluminum (TMA), diethylzinc(DEZ), and water vapor. In order to improve the absorbance of light, atypical surface texturing method is wet etching of front electrode using chemical solution. Alternatively, LPCVD can create a rough surface during deposition. This "self-texturing" is a very useful technique, which can eliminate additional chemical texturing process. The introduction of a TMA doping source has a strong influence on resistivity and the diffusion of light in a wide wavelength range.The haze factor of AZO up to a value of 43 % at 600 nm was achieved without an additional surface texturing process by simple TMA doping. The use of AZO TCO resulted in energy conversion efficiencies of 7.7 % when it was applied to thep-i-n a-Si:H thin film solar cell, which was comparable to commercially available fluorine doped tin oxide ($SnO_2$:F).

  • PDF

Study of metal dopants and/or Ag nanoparticles incorporated direct-patternable ZnO film by photochemical solution deposition

  • Kim, Hyun-Cheol;Reddy, A.Sivasankar;Park, Hyung-Ho
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.368-368
    • /
    • 2007
  • Zinc oxide (ZnO) has drawn much interest as a potential transparent conducting oxide (TCO) for applying to solar cell and front electrode of electro-luminescent devices. For the enhancement of electrical property of TCOs, dopant introduction and hybridization with conductive nanoparticles have been investigated. In this work, ZnO films were formed on glass substrate by using photochemical solution deposition of Ag nanoparticles dispersed or various metal (Ag, Cd, In, or Sn) contained photosensitive ZnO solutions. The usage of photosensitive solution permits us to obtain a micron-sized direct patterning of ZnO film without using conventional dry etching procedure. The structural, optical, and electrical characteristics of ZnO films with the introduction of metal dopants with/without Ag nanoparticles have been investigated to check whether there is a combined effect between metal dopants and Ag nanoparticles on the characteristics of ZnO film. The phase formation and crystallinity of ZnO film were monitored with X-ray diffractometer. The optical transmittance measurement was carried out using UV-VIS-NIR spectrometer and the electrical properties such as sheet resistance and conductivity were observed by using four-point probe.

  • PDF

Spin-coating을 이용하여 Flexible Film에 제작된 ZnO TCO의 특성 분석 (The Characterization of Spin Coated ZnO TCO on the Flexible Substrates)

  • 전민철;이규탁;박상욱;이경주;문병무;조원주;고중혁
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.290-293
    • /
    • 2012
  • This article introduces the characterization of spin coated ZnO transparent conducting oxide on the flexible substrates. As a II-IV compound semiconductor, ZnO has a wide band gap of 3.37 eV with transparent properties. Due to this transparent properties, ZnO materials can be also employed as the transparent conducting electrode materials. Therefore, strong demands have been required for the transparent electrodes with low temperature processing and cheap cost. So, We will investigate the electrical property and optical transmittance of ZnO transparent conducting oxide through the 4-point probe resistivity meter, and ultraviolet-vis spectrometer Lamda 35, respectively.

Study on the Electrical Stability of Al-doped ZnO Thin Films For OLED as an alternative electrode

  • Jung, Jong-Kook;Lee, Seong-Eui;Lim, Sil-Mook;Lee, Ho-Nyeon;Lee, Young-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1469-1472
    • /
    • 2006
  • We investigated the electrical and optical properties of ZnO:Al thin films as a function of the thermal process conditions. The film was prepared by RF magnetron sputtering followed by annealing in a box furnace in air. An ZnO:Al (98:2) alloy with the purity of 99.99% (3 inch diameter) was used as the target material. The electrical properties of the transparent electrode, exhibited surface oxidation as a result of rapid oxygen absorption with increasing annealing temperature. The processed ZnO:Al films and commercial ITO(indium-tin-oxide) were applied to an OLED stack to investigate the current density and luminescence efficiency. The efficiency of the device using the ZnO:Al electrode was higher than that from the device using the ITO electrode.

  • PDF