DOI QR코드

DOI QR Code

Preparation and characterization of silver nanowire transparent electrodes using shear-coating

Shear-coating을 사용한 은 나노와이어 투명 전극 제조 및 특성 분석

  • Cho, Kyung Soo (Department of Materials and Manufacturing Engineering, Hanbat National University) ;
  • Hong, Ki-Ha (Department of Materials Science and Engineering, Hanbat National University) ;
  • Park, Joon Sik (Department of Materials and Manufacturing Engineering, Hanbat National University) ;
  • Chung, Choong-Heui (Department of Materials and Manufacturing Engineering, Hanbat National University)
  • 조경수 (한밭대학교 공과대학 소재시스템공학과) ;
  • 홍기하 (한밭대학교 공과대학 신소재공학과) ;
  • 박준식 (한밭대학교 공과대학 소재시스템공학과) ;
  • 정중희 (한밭대학교 공과대학 소재시스템공학과)
  • Received : 2020.07.23
  • Accepted : 2020.08.26
  • Published : 2020.08.31

Abstract

Indium tin oxide (ITO) used a transparent electrode of a photoelectric device has a low sheet resistance and a high transmittance. However, ITO is disadvantageous in that the process cost is expensive, and the process time is long. Silver nanowires (AgNWs) transparent electrodes are based on a low cost solution process. In addition, it has attracted attention as a next-generation transparent electrode material that replaces ITO because it has similar electrical and optical characteristic to ITO, it is noted as a. AgNW thin films are mainly produced by spin-coating. However, the spin-coating process has a disadvantage of high material loss. In this study, the material loss was reduced by using about 2~10 ㎕ of AgNW solution on a (25 × 25) ㎟ substrate using the shear-coating method. It was also possible to align AgNWs in the drag direction by dragging the meniscus of the solution. The electro-optical properties of the AgNW thin film were adjusted by changing the experimental parameters that the amount of AgNWs suspension, the gap between the substrate and the blade, and the coating speed. As a result, AgNW thin films with a transmittance of 90.7 % at a wavelength of 550 nm and a sheet resistance of 15 Ω/□ was deposited and exhibited similar properties to similar AgNW transparent electrodes studied by other researchers.

Keywords

References

  1. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, J. -J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 5 (2010) 574-578. https://doi.org/10.1038/nnano.2010.132
  2. H. Wu, D. Kong, Z. Ruan, P. -C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, Y. Cui, A transparent electrode based on a metal nanotrough network, Nat. Nanotechnol., 8 (2013) 421-425. https://doi.org/10.1038/nnano.2013.84
  3. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility, Nat. Commun., 3 (2012) 550.
  4. H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics, Nat. Commun., 6 (2015) 1-7.
  5. T. H. Han, Y. Lee, M. -R. Choi, S. -H. Woo, S. -H. Bae, B. H. Hong, J. -H. Ahn, T. -W. Lee, Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nat. Photonics, 6 (2012) 105-110. https://doi.org/10.1038/nphoton.2011.318
  6. N. Li, S. Oida, G. S. Tuleski, S. -J. Han, J. B. Hannon, D. K. Sadana, T. -C. Chen, Efficient and bright organic light-emitting diodes on single-layer graphene electrodes, Nat. Commun., 4 (2013) 1-7.
  7. S. Lee, J. Jang, T. Park, Y. M. Park, J. S. Park, Y. -K. Kim, H. -K. Lee, E. -C. Jeon, D. -K. Lee, B. Ahn, C. -H. Chung, Electrodeposited Silver Nanowire Transparent Conducting Electrodes for Thin-Film Solar Cells, ACS Appl. Mater. Interfaces, 12 (2020) 6169-6175. https://doi.org/10.1021/acsami.9b17168
  8. S. Lee, K. S. Cho, S. Song, K. Kim, Y. J. -Eo, J. H. Yun, J. Gwak, C. -H. Chung, Fabrication of robust nanoscale contact between a silver nanowire electrode and cds buffer layer in cu(In,ga)se2 thin-film solar cells, J. Vis. Exp., (2019) 2-7.
  9. H. Ji, J. Jang, S. Lee, C. -H. Chung, Enhancement of electrical conductivity in silver nanowire network for transparent conducting electrode using copper electrodeposition, Korean J. Mater. Res., 29 (2019) 311-316. https://doi.org/10.3740/MRSK.2019.29.5.311
  10. S. Lee, J. S. Lee, J. Jang, K. -H. Hong, D. -K. Lee, S. Song, K. Kim, Y. -J. Eo, J. H. Yun, J. Gwak, C. -H. Chung, Robust nanoscale contact of silver nanowire electrodes to semiconductors to achieve high performance chalcogenide thin film solar cells, Nano Energy, 53 (2018) 675-682. https://doi.org/10.1016/j.nanoen.2018.09.027
  11. J. Jang, D. -Y. Park, K. -H. Hong, S. Song, K. Kim, Y. -J. Eo, J. Gwak, J. H. Yun, C. -H. Chung, Improvement of Contact Resistance Between Each Silver Nanowire and Thermal Stability of Silver Nanowire Transparent Electrodes by Electrodeposition, Nanosci. Nanotechnol. Lett., 10 (2018) 528-532. https://doi.org/10.1166/nnl.2018.2671
  12. J. Jang, J. S. Lee, K.H. Hong, D.K. Lee, S. Song, K. Kim, Y. J. Eo, J. H. Yun, C.H. Chung, Cu(In,Ga)Se2 thin film solar cells with solution processed silver nanowire composite window layers: Buffer/window junctions and their effects, Sol. Energy Mater. Sol. Cells, 170 (2017) 60-67. https://doi.org/10.1016/j.solmat.2017.05.051
  13. B. Bob, A. Machness, T. -B. Song, H. Zhou, C. -H. Chung, Y. Yang, Silver nanowires with semiconducting ligands for low-temperature transparent conductors, Nano Res., 9 (2016) 392-400. https://doi.org/10.1007/s12274-015-0920-x
  14. C. -H. Chung, T. -B. Song, B. Bob, R. Zhu, Y. Yang, Solution-processed flexible transparent conductors composed of silver nanowire networks embedded in indium tin oxide nanoparticle matrices, Nano Res., 5 (2012) 805-814. https://doi.org/10.1007/s12274-012-0264-8
  15. C. -H. Chung, T. -B. Song, B. Bob, R. Zhu, H. -S. Duan, Y. Yang, Silver nanowire composite window layers for fully solution-deposited thin-film photovoltaic devices, Adv. Mater., 24 (2012) 5499-5504. https://doi.org/10.1002/adma.201201010
  16. D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. C. Bradley, J. C. De Mello, Efficient organic solar cells with solution-processed silver nanowire electrodes, Adv. Mater., 23 (2011) 4371-4375. https://doi.org/10.1002/adma.201100871
  17. S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, J. -J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 5 (2010) 574-578. https://doi.org/10.1038/nnano.2010.132
  18. Y. Lee, S. -Y. Min, T. -S. Kim, S. -H. Jeong, J. Y. Won, H. Kim, W. Xu, J. K. Jeong, T. -W. Lee, Versatile Metal Nanowiring Platform for Large-Scale Nano- and Opto-Electronic Devices, Adv. Mater., 28 (2016) 9109-9116. https://doi.org/10.1002/adma.201602855
  19. H. Koga, M. Nogi, N. Komoda, T. T. Nge, T. Sugahara, K. Suganuma, Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics, NPG Asia Mater., 6 (2014) 1-8.
  20. J. -H. Choe, A. -Y. Jang, J. -H. Kim, C. -H. Chung, K. -H. Hong, Effects of dispersion solvent on the spray coating deposition of silver nanowires, J. Korean Inst. Met. Mater., 55 (2017) 509-514. https://doi.org/10.3365/KJMM.2017.55.7.509
  21. S. J. Lee, Y. -H. Kim, J. K. Kim, H. Baik, J. H. Park, J. Lee, J. Nam, J. H. Park, T. -W. Lee, G. -R. Yi, J. H. Cho, A roll-to-roll welding process for planarized silver nanowire electrodes, Nanoscale, 6 (2014) 11828-11834. https://doi.org/10.1039/C4NR03771E
  22. H. Sim, S. Bok, B. Kim, M. Kim, G. -H. Lim, S. M. Cho, B. Lim, Organic-Stabilizer-Free Polyol Synthesis of Silver Nanowires for Electrode Applications, Angew. Chemie - Int. Ed., 55 (2016) 11814-11818. https://doi.org/10.1002/anie.201604980
  23. S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan, Y. Lee, J. Park, S. L. Craig, H. Ko, Large-Area Cross-Aligned Silver Nanowire Electrodes for Flexible, Transparent, and Force-Sensitive Mechanochromic Touch Screens, ACS Nano, 11 (2017) 4346-4357. https://doi.org/10.1021/acsnano.7b01714
  24. Q. Sun, S. J. Lee, H. Kang, Y. Gim, H. S. Park, and J. H. Cho, Positively-charged reduced graphene oxide as an adhesion promoter for preparing a highly-stable silver nanowire film, Nanoscale, 7 (2015) 6798-6804. https://doi.org/10.1039/C5NR00777A
  25. J. Choe, J. Song, D. Lee, H. R. Byun, M. S. Jeong, C. -H. Chung, K. -H. Hong, J. Kim, Rapid large-grain (>100 ${\mu}m$) formation of organic-inorganic perovskite thin films via shear deposition for photovoltaic application, Sol. Energy, 191 (2019) 629-636. https://doi.org/10.1016/j.solener.2019.09.008
  26. C. H. Choi and C. J. Kim, Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Phys. Rev. Lett., 96 (2006) 1-4.
  27. H. Yu, P. Zhang, A kinetic-hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow, J. Nonnewton. Fluid Mech., 141 (2007) 116-127. https://doi.org/10.1016/j.jnnfm.2006.09.005
  28. B. Park, I. G. Bae, Y. H. Huh, Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics, Sci. Rep., 6 (2016) 1-9. https://doi.org/10.1038/s41598-016-0001-8
  29. D. M. Kuncicky, R. R. Naik, O. D. Velev, Rapid deposition and long-range alignment of nanocoatings and arrays of electrically conductive wires from tobacco mosaic virus, Small, 2 (2006) 1462-1466. https://doi.org/10.1002/smll.200600399
  30. K. M. Chiang, Z. Y. Huang, W. L. Tsai, H. W. Lin, Orthogonally weaved silver nanowire networks for very efficient organic optoelectronic devices, Org. Electron., 43 (2017) 15-20. https://doi.org/10.1016/j.orgel.2016.12.054
  31. S. Kang, T. Kim, S. Cho, Y. Lee, A. Choe, B. Walker, S. -J, Ko, J. Y. Kim, H. Ko, Capillary printing of highly aligned silver nanowire transparent electrodes for high-performance optoelectronic devices, Nano Lett., 15 (2015) 7933-7942. https://doi.org/10.1021/acs.nanolett.5b03019
  32. Y. Ko, S. K. Song, N. H. Kim, S. T. Chang, Highly Transparent and Stretchable Conductors Based on a Directional Arrangement of Silver Nanowires by a Microliter-Scale Solution Process, Langmuir, 32 (2016) 366-373. https://doi.org/10.1021/acs.langmuir.5b03251