• Title/Summary/Keyword: transparent display

Search Result 496, Processing Time 0.032 seconds

Inkjet-print patterned transparent conductive CNT films

  • Kim, Mun-Ja;Shin, Jun-Ho;Lee, Jong-Hak;Lee, Hyun-Chul;Yoo, Ji-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1119-1121
    • /
    • 2006
  • Using a chemical radical we modified the surface property of PET substrates. The chemically treated substrate surface improved dispersion of CNTs on substrate and provides suitable adhesion of CNTs to substrate. In addition, an ink-jet printed patterning technique effectively improved the transparency of transparent conductive CNT composite films.

  • PDF

Fabrication and Characterization of Bi-Based Frit Film for PDP Transparent Dielectric Front Panel (PDP 투명 유전체용 Bi계 프릿트 필름의 제조 및 특성분석)

  • Lee, Sang-Jin;Kim, Joo-Won;Hwang, Jong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.10
    • /
    • pp.548-553
    • /
    • 2007
  • Ceramic green sheets consisting Bi-based glass frit were fabricated for an application to PDP transparent dielectric front panel. The dispersion condition of the slurry for tape casting was pre-examined, and two kinds of hinder and plasticizer were used in the non-aqueous slurry system. In the fabrication process for the frit film, the properties such as dry and firing shrinkage, elongation, and transmittance were examined at the condition of various mixing ratio of plasticizers. In the mixing ratio of polyethylene glycol to dibutyl phthalate of 3:5wt%, a good adhesion, elongation and transmittance were observed at the firing temperature of $580^{\circ}C$. The photograph for the cross section of the interface was also showed a dense microstructure.

Laser Direct Patterning of Carbon Nanotube Film

  • Yun, Ji-Uk;Jo, Seong-Hak;Jang, Won-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.203-203
    • /
    • 2012
  • The SWCNTs network are formed on various plastic substrates such as poly(ethylene terephthalate) (PET), polyimide (PI) and soda lime glass using roll-to-roll printing and spray process. Selective patterning of carbon nanotubes film on transparent substrates was performed using a femtosecond laser. This process has many advantages because it is performed without chemicals and is easily applied to large-area patterning. It could also control the transparency and conductivity of CNT film by selective removal of CNTs. Furthermore, selective cutting of carbon nanotube using a femtosecond laser does not cause any phase change in the CNTs, as usually shown in focused ion beam irradiation of the CNTs. The patterned SWCNT films on transparent substrate can be used electrode layer for touch panels of flexible or flat panel display instead indium tin oxide (ITO) film.

  • PDF

Transparent ZnO based thin film transistors fabricated at room temperature with high-k dielectric $Gd_2O_3$ gate insulators

  • Tsai, Jung-Ruey;Li, Chi-Shiau;Tsai, Shang-Yu;Chen, Jyun-Ning;Chien, Po-Hsiu;Feng, Wen-Sheng;Liu, Kou-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.374-377
    • /
    • 2009
  • The characteristics of the deposited thin films of the zinc oxide (ZnO) at different oxygen pressures will be elucidated in this work. The resistivity of ZnO thin films were dominated by the carrier concentration under high oxygen pressure conditions while controlled by the carrier mobility at low oxygen ambiences. In addition, we will show the characteristics of the transparent ZnO based thin film transistor (TFT) fabricated at a full room temperature process with gate dielectric of gadolinium oxide ($Gd_2O_3$) thin films.

  • PDF

Flexible, Transparent Thin-Film Transistors Fabricated by Ink-Jet Printing with Carbon Nanotube-Based Conducting Ink

  • Lee, Yeon-Ju;Lee, Woo-Suk;Jeong, Soo-Kyeong;Choi, Seok-Ju;Kim, Hye-Min;Chun, Jin-Young;Kim, Sung-Ho;Geckeler, Kurt E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.920-922
    • /
    • 2009
  • Flexible, transparent thin-film transistor with active layers composed of carbon nanotube-based conducting ink were fabricated on a plastic substrate by ink-jet printing. The properties of the formulated conducting ink containing carbon nanotubes, a conducting polymer, and additives were characterized and optimized. The conducting ink was applied to flexible thin-film transistors using ink-jet printing.

  • PDF

Luminescent properties of a $Zn_2SiO_4:Mn^{2+}$ film phosphor prepared by spray pyrolysis

  • Kim, Kyoun-Gun;Moon, Young-Min;Choi, Sung-Ho;Lee, Sun-Sook;Chung, Taek-Mo;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1300-1302
    • /
    • 2009
  • Transparent $Zn_2SiO_4:Mn^{2+}$ film has been synthesized by spray pyrolysis with various spraying conditions. It illuminates an efficient green emission with the relative emission intensity about 45% under 147nm excitation of a commercial powder phosphor. Additionally, the zinc precursors and additives play a key factor both controlling luminous efficiency and transparency.

  • PDF

Preparation and characterization of high transmittance and low resistance index matched transparent conducting oxide coated glass for liquid crystal on silicon panel

  • Jang, Chang-Young;Paik, Woo-Sung;Choi, Bum-Ho;Kim, Young-Back;Lee, Jong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1415-1417
    • /
    • 2009
  • High transmittance and low resistance index matched transparent conducting oxide (IMTCO) coated glass was prepared and characterized. IMTCO was deposited by RF magnetron sputtering with the thickness of 15nm and 90nm thick anti-reflection layer was evaporated. To modify surface to hydrophilic, in-situ plasma treatment was also performed. IMTCO coated glass exhibited 96.6% of transmittance in the wavelength range of 400~700nm which is relatively high value compared to commercially available IMTCO glass. The sheet resistance uniformity was measured to be 1.53%.

  • PDF

Tandem reflective LCD and OLED

  • Lee, Jiun-Haw;Xianyu, Haiqing;Ge, Zhibing;Liu, Kou-Chen;Wu, Shin-Tson
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.977-979
    • /
    • 2007
  • We demonstrate a hybrid device with high ambien t-contrast-ratio (>133.8:1) under any ambient co nditions by vertically integrating a reflective LCD and a transparent OLED. The twisted nematic LC cell is placed beneath the OLED to improve dev ice transmittance by 53.8% due to the asymmet ric emission from both-sides of the transparent OLED.

  • PDF

Development of Transparent Dielectric Paste for PDP

  • Kim, Hyung-Jong;Kyoung Joo;Auh, Ken-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.79-83
    • /
    • 1998
  • Plasma display panel is a potential candidate for HDTV, due to the fact hat the expansion of screen size is much easier using thick film technology. In this study, transparent dielectric materials using lead borosilicate glasses is developed, which satisfy the requirements of dielectrics for PDP. Paste is made of this glass composition. The paste has thixotropic behavior suitable for screen printing. The paste shows more thixotropic behavior as the particle size decrease. After firing, cross sectional area was analyzed by SEM. The void of fired thick film was removed using bimodal particle system. The dielectric showed good adhesion characteristics.

  • PDF

Properties of ZnO:Al Transparent Conducting Films for PDP (PDP 투명전극의 응용을 위한 ZnO:Al 박막의 제작 및 평가)

  • Park, Kang-Il;Kim, Byung-Sub;Kim, Hyun-Soo;Lim, Dong-Gun;Park, Gi-Yub;Lee, Se-Jong;Kwak, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1430-1432
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and deposition time on the electrical, optical and morphological properties were investigated experimentally. ZnO:Al films with the optimum growth conditions of working gas pressure and substrate temperature showed resistivity of $9.64{\times}10^{-4}\;{\Omega}$-cm and transmittance of 90.02% for a film 860nm thick in the wavelength range of the visible spectrum.

  • PDF