• Title/Summary/Keyword: transmission line tower

Search Result 134, Processing Time 0.024 seconds

Development of Arm Insulator for Self-Build Based Emergency Tower (긴급복구용 자주조립식 철주 절연암 개발)

  • Min, Byeong-Wook;Wi, Hwa-Bog;Park, Jae-Ung;Lee, Cheol-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.107-108
    • /
    • 2007
  • Overhead transmission lines are completely exposed to the environment. This causes faults in transmission lines due to natural environmental conditions. In some cases, transmission towers are damaged by typhoons and snow, as well as sleet on the transmission lines. It takes a lot of time to repair the damaged towers. For emergency restoration purposes, steel poles are installed to temporarily supply power. Before 2003, emergency restoration steel poles were made of angled steel, which required a large number of beams, bolts, etc. In addition, the foundation of the steel pole and ground wire was constructed using excavation and burial methods, therefore it required a lot of manpower and time to construct temporary transmission lines. In September 2003, typhoon Maemi, whose maximum wind speed was 60m/s, hit Korea. 'Maemi' destroyed transmission lines in the Busan and Geojea area, causing long blackouts. To reduce the recovery time to the damaged transmission lines, self-build based emergency towers were developed. self-build based emergency towers reduced recovery time from 24 hours to 4 hours or less. However, the self-build based emergency tower had no arms, so the temporary transmission lines could only be constructed without curves in line routes. In this paper, solving these self-build based emergency tower limitations, using insulated arms(designed for use with the self-build based emergency tower), shall be explained.

  • PDF

345kV Overhead Transmission Line Collapse Analysis and Countermeasures (345kV 인천화력 송전선로 철탑도괴 원인분석 및 대책)

  • Park, Jae-Ung;Shin, Tai-Woo;Choi, Jin-Sung;Choi, Han-Yeol;Min, Byeong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.531-535
    • /
    • 2010
  • 345kV Incheon Thermal Power Plant Transmission Line Collapse Analysis and Countermeasures. The Typhoon Galmaegi which had been formed in July 15, 2008 diminished into a tropical cyclone and cooled the air above the West Sea. The cooled air colliding with the warm inland air caused a strong whirlwind at some places in the west seaside; the whirlwind battered the 345kV Incheon Thermal Power Plant Transmission Line to be collapsed. The resistance of transmission towers against wind pressure, one of the key elements in transmission line engineering, is designed to endure the pressure corresponding to the maximum instantaneous wind speed. Before the above accident happened, no transmission line has ever been collapsed by a whirlwind. So this paper is aimed to analyze causes that collapsed 345kV Incheon Thermal Power Plant transmission line and to introduce countermeasures.

Analysis of Electrical Safety Level Test for Barehand Work at 765kV Vertical Double Circuit Six Bundle Conductors on the Suspension String Tower Type (765kV 수직2회선 6도체 현수형 철탑에서 직접활선작업의 안전성 평가분석)

  • Kim, Dae-Sik;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.275-278
    • /
    • 2008
  • It has been issued that the necessity of Live line work for 765kV vertical double circuit six bundle conductors transmission line when the characteristics of transmission line, the composition of T/L and near the T/L circumstances etc. Others are considered. The Barehand method of UHV T/L is extremely dangerous work and especially it is directly related with lineman life so it is very dangerous. It should be performed several technology developments for live-line work on the UHV T/L, that should be considered such as the electrical influence on workers near the T/L, development of live-line facilities, guarantee of safety, the technical rules of live-line work, the safe method of live-line work and etc. In order to maintain the 765kV transmission lines safely by barehand work, first of all, we should know the analysis of electrical safety level test in live-line work at 765kV vertical double circuit six bundle conductors on the suspension string tower type.

Seismic response study of tower-line system considering bolt slippage under foundation displacement

  • Jia-Xiang Li;Jin-Peng Cheng;Zhuo-Qun Zhang;Chao Zhang
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.135-143
    • /
    • 2024
  • Once the foundation displacement of the transmission tower occurs, additional stress will be generated on the tower members, which will affect the seismic response of transmission tower-line systems (TTLSs). Furthermore, existing research has shown that the reciprocating slippage of joints needs to be considered in the seismic analysis. The hysteretic behavior of joints is obtained by model tests or numerical simulations, which leads to the low modeling efficiency of TTLSs. Therefore, this paper first utilized numerical simulation and model tests to construct a BP neural network for predicting the skeleton curve of joints, and then a numerical model for a TTLS considering the bolt slippage was established. Then, the seismic response of the TTLS under foundation displacement was studied, and the member stress changes and the failed member distribution of the tower were analyzed. The influence of foundation displacement on the seismic performance were discussed. The results showed that the trained BP neural network could accurately predict the hysteresis performance of joints. The slippage could offset part of the additional stress caused by foundation settlement and reduce the stress of some members when the TTLS with foundation settlement was under earthquakes. The failure members were mainly distributed at the diagonal members of the tower leg adjacent to the foundation settlement and that of the tower body. To accurately analyze the seismic performance of TTLSs, the influence of foundation displacement and the joint effect should be considered, and the BP neural network can be used to improve modeling efficiency.

A study on the Unbalanced Insulation of the Double Circuit 154 kV Transmission Lines to Reduce Lightning Failure Rate (뇌사고율 저감을 위한 154 kV 송전선의 차등절연 적용 방안 연구)

  • Kwak, J.S.;Kang, Y.W.;Woo, J.W.;Shim, E.B.;Kim, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.151-159
    • /
    • 2003
  • According to the records, approximately 50 percent of power failure were caused by lightning. Conventional fault preventive measures against lightning include reduction of the footing resistance of the tower, multiplication of overhead ground wires and unbalanced insulation of the double circuit transmission tower. In addition to these, transmission line arresters have been recently appeared as an alternatives. In this paper an unbalanced insulation method with transmission line arrester was assumed as another countermeasure against simultaneous double circuit trip of 154 kV transmission line by lightning strike. The lightning performance of line arrester was compared with conventional insulation concept using different numbers of porcelain and glass insulator. Larger numbers of insulator simply increase flashover current level by lightning but the lightning performance doesn't proportional to it. EMTP simulation and predictive calculation of lightning failure rate were carried out to evaluate the performance.

  • PDF

A review of the transmission tower-line system performance under typhoon in wind tunnel test

  • Li, Xianying;Yao, Yu;Wu, Hongtao;Zhao, Biao;Chen, Bin;Yi, Tao
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.87-98
    • /
    • 2019
  • As a regenerated turbulent wind field process, wind tunnel test has proven to be a promising approach for investigating the transmission tower-line system (TTLS) performance in view of experimental scaled models design, simulation techniques of wind field, and wind induced responses subjected to typhoon. However, the challenges still remain in using various wind tunnels to regenerate turbulent wind field with considerable progress having been made in recent years. This review paper provides an overview of the state-of-the-art of the wind tunnel based on active or passive controlled simulation techniques. Specific attention and critical assessment have been given to: (a) the design of experimental scaled models, (b) the simulation techniques of wind field, and (c) the responses of TTLS subjected to typhoon in wind tunnel. This review concludes with the research challenges and recommendations for future research direction.

Failure analysis of a transmission tower during a microburst

  • Shehata, A.Y.;El Damatty, A.A.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.193-208
    • /
    • 2008
  • This paper focuses on assessing the failure of one of the transmission towers that collapsed in Winnipeg, Canada, as a result of a microburst event. The study is conducted using a fluid-structure numerical model that was developed in-house. A major challenge in microburst-related problems is that the forces acting on a structure vary with the microburst parameters including the descending jet velocity, the diameter of the event and the relative location between the structure and the jet. The numerical model, which combines wind field data for microbursts together with a non-linear finite element formulation, is capable of predicting the progressive failure of a tower that initiates after one of its member reaches its capacity. The model is employed first to determine the microburst parameters that are likely to initiate failure of a number of critical members of the tower. Progressive failure analysis of the tower is then conducted by applying the loads associated with those critical configurations. The analysis predicts a collapse of the conductors cross-arm under a microburst reference velocity that is almost equal to the corresponding value for normal wind load that was used in the design of the structure. A similarity between the predicted modes of failure and the post event field observations was shown.

Electrical and Mechanical Noise Study of the 765kV Transmission Line (765kV 송전선로의 전기적 및 기계적 소음고찰)

  • Lee,
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.89-95
    • /
    • 1996
  • If the transmission line voltage is greater than 500kV, audible noise (AN) and hum noise (HN) due to corona discharges on the conductor would be an important design factor for the conductor selection of transmission line. Also there is an aeolian noise: wind noise(WN) from the tower and the conductor due to wind. This paper presents the results of a statistical analysis of audible noise, hum noise, aeolian noise of 6-480mm$^{2}$ conductor bundle in KEPRI 765kV Test Transmission Line which was constructed to develop 765kV double circuit AC transmission line for the first time in the world. The result of the analysis shows that 6-480mm$^{2}$ conductor bundle and tower satisfy configuration the audible noise design criterion of 50dB(A).

  • PDF

Behavior of Electric Transmission Tower with Rock Anchor Foundation (암반 앵커기초로 시공된 송전철탑 구조물의 거동특성에 관한 연구)

  • Kim, Kyoung-Yul;Hong, Sung-Yun;Lee, Dae-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.605-614
    • /
    • 2010
  • In this paper, the initial behavior of transmission tower was analyzed. This tower was firstly constructed by rock anchor foundation in domestic 154 kV transmission line and wireless real-time monitoring system was installed to obtain the measured data for analysis of the structure behavior. For this purpose, 16 strain gauges was installed in anchors of foundation and strain gauges, clinometers, anemoscope and settlement sensors was installed at superstructure. As the results, the main factor which influence the behavior of superstructure is wind velocity, wind direction, rainfall and temperature change. Especially, the uplift load at stub of transmission structure revealed about 35.4 percentages of design load. Hereafter the long term stability will be analyzed.

  • PDF

Measurement and Analysis of Electric and Magnetic Fields near 345[kV] Transmission Tower (345[kV] 송전철탑 주변에서 전장과 자장의 측정과 분석)

  • 이복희;이승칠;안창환;길형준;전덕규;길경석
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.14-21
    • /
    • 1998
  • In this paper, the measurements of ELF electric and magnetic fields due to double circuit 345[kV} transmission lines are made using planar-type electric field sensor and multitum loop-type magnetic field sensor, and the magnitudes of electric and magnetic fields are illustrated by a three-dimensional plot. Also, in order to predict the magnetic field strength with lad variation, a typical daily load current curves of the transmission lines are displayed because the magnetic field is changed with load current. experimental results of ELF electric and magnetic fields along center line versus lateral distance are compared with the theoretical values computed by using the FIELDS program. The electric field intensity in and around a transmission tower is lowered, and the greatest point of the magnetic field is shifted to the heavy load line but generally is given the trend that the peak value appear at the central part of the transmission tower. The magnitudes of the maximum electric and magnetic fields in the vicinity of a transmission tower are less than 3.5[kV/m] and $20[{\mu}T]$, respectively. The measured electric and magnetic fields are satisfied with limits and guidelines recommended by various authorized international institutes.

  • PDF