DOI QR코드

DOI QR Code

A review of the transmission tower-line system performance under typhoon in wind tunnel test

  • Li, Xianying (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Yao, Yu (College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Wu, Hongtao (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Zhao, Biao (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Chen, Bin (State Grid Fujian Electric Power Research Institute) ;
  • Yi, Tao (State Grid Fujian Electric Power Research Institute)
  • Received : 2018.03.19
  • Accepted : 2018.08.17
  • Published : 2019.08.25

Abstract

As a regenerated turbulent wind field process, wind tunnel test has proven to be a promising approach for investigating the transmission tower-line system (TTLS) performance in view of experimental scaled models design, simulation techniques of wind field, and wind induced responses subjected to typhoon. However, the challenges still remain in using various wind tunnels to regenerate turbulent wind field with considerable progress having been made in recent years. This review paper provides an overview of the state-of-the-art of the wind tunnel based on active or passive controlled simulation techniques. Specific attention and critical assessment have been given to: (a) the design of experimental scaled models, (b) the simulation techniques of wind field, and (c) the responses of TTLS subjected to typhoon in wind tunnel. This review concludes with the research challenges and recommendations for future research direction.

Keywords

References

  1. Aboshosha, H., Elawady, A., Ansary, A.E. and Damatty, A.E. (2016), "Review on dynamic and quasi-static buffeting response of transmission lines under synoptic and non-synoptic winds", Eng. Struct., 112, 23-46. https://doi.org/10.1016/j.engstruct.2016.01.003.
  2. Aly, A.M. (2014), "Atmospheric boundary-layer simulation for the built environment: Past, present and future", Build. Environ., 75(3), 206-221. https://doi.org/10.1016/j.buildenv.2014.02.004.
  3. Aly, A.M. and Gol-Zaroudi, H. (2017), "Atmospheric boundary layer simulation in a new open-jet facility at LSU: CFD and experimental investigations", Measurement, 110. https://doi.org/10.1016/j.measurement.2017.06.027.
  4. Aly, A.M., Bitsuamlak, G.T. and Chowdhury, A.G. (2012), "Fullscale aerodynamic testing of a loose concrete roof paver system", Eng. Struct., 44(6), 260-270. https://doi.org/10.1016/j.engstruct.2012.05.008.
  5. Baheru, T., Chowdhury, A.G., Bitsuamlak, G.T., Masters, F.J. and Tokay, A. (2014), "Simulation of wind-driven rain associated with tropical storms and hurricanes using the 12-fan Wall of Wind", Build. Environ., 76(6), 18-29. https://doi.org/10.1016/j.buildenv.2014.03.002.
  6. Bai, H., He, H.X., Liu, J.X., Zhao, G. H. and Gao, L. (2016), "Wind characteristic parameters in grille turbulent flow", J. Vib. Shock., 35(22), 209-214. https://doi.org/10.13465/j.cnki.jvs.2016.22.031.
  7. Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads on a high slender tower: Numerical and experimental comparison", Eng. Struct., 68(4), 24-32. https://doi.org/10.1016/j.engstruct.2014.02.030.
  8. Blessing, C., Chowdhury, A.G., Lin, J. and Huang, P. (2009), "Full-scale validation of vortex suppression techniques for mitigation of roof uplift", Eng. Struct., 31(12), 2936-2946. https://doi.org/10.1016/j.engstruct.2009.07.021.
  9. Bowen, A.J. (2003), "Modelling of strong wind flows over complex terrain at small geometric scales", J. Wind Eng. Ind. Aerod.., 1859-1871. https://doi.org/10.1016/j.jweia.2003.09.029.
  10. Butler, K., Cao, S.Y., Kareem, A., Tamura, Y. and Ozono, S. (2010), "Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field", J. Wind Eng. Ind. Aerod., 98(6-7), 299-316. https://doi.org/10.1016/j.jweia.2009.11.003.
  11. Cao, J.X., Cao, S.Y. and Ge, Y.J. (2017), "Characteristics and performances of a newly built actively controlled multiple fan wind tunnel", Proceedings of the 9th Asia-Pacific Conference on Wind Engineering, Auckland, New Zealand, December.
  12. Cao, S.Y., Nishi, A., Kikugawa, H. and Matsuda, Y. (2002), "Reproduction of wind velocity history in a multiple fan wind tunnel", J. Wind Eng. Ind. Aerod., 90(12-15), 1719-1729. https://doi.org/10.1016/S0167-6105(02)00282-9.
  13. Cao, S.Y., Nishi, A., Hirano, K., Ozono, S., Miyagi, H. and Kikugawa, H. (2001), "An actively controlled wind tunnel and its application to the reproduction of the atmospheric boundary layer", Bound.-Lay. Meteorol., 101(1), 61-76. https://doi.org/10.1023/A:1019288828837.
  14. Cermak, J.E. (1992), "Physical modeling of the atmospheric surface layer", J. Wind Eng. Ind. Aerod., 42(1), 935-946. https://doi.org/10.1016/0167-6105(92)90100-O.
  15. Cermak, J.E. (1995), "Progress in physical modeling for wind engineering", J. Eng. Mech., 54-55(94), 439-455. https://doi.org/10.1016/0167-6105(94)00064-K.
  16. Cermak, J.E. (2003), "Wind tunnel development and trends in applications to civil engineering", J. Wind Eng. Ind. Aerod., 91, 355-370. https://doi.org/10.1016/S0167-6105(02)00396-3.
  17. Chen, F.B., Li, Q.S., Wu, J.R. and Fu, J.Y. (2011), "Wind effects on a long-span beam string roof structure: Wind tunnel test, field measurement and numerical analysis", J. Constr. Steel Res., 67(10), 1591-1604. https://doi.org/10.1016/j.jcsr.2011.04.003.
  18. Chuang, H. and Cermak, J.E. (1965), "Turbulence measured by electrokinetic transducers", J. Hydraul. Div., 91(6), 1-5. https://doi.org/10.1016/0011-7471(66)90627-9.
  19. Damatty, A.E. and Elawady, A. (2018), "Critical load cases for lattice transmission line structures subjected to downbursts: economic implications for design of transmission lines", Eng. Struct., 159, 213-226. https://doi.org/10.1016/j.engstruct.2017.12.043.
  20. Deng, H.Z., Jiang, Q., Li, F. and Wu, Y. (2011), "Vortex-induced vibration tests of circular cylinders connected with typical joints in transmission towers", J. Wind Eng. Ind. Aerodyn., 99(10), 1069-1078. https://doi.org/10.1016/j.jweia.2011.07.005.
  21. Deng, H.Z., Li, F., Cai, Q., Dong, J.Y. and Fu, P.C. (2017), "Experimental and numerical analysis on the slope change joint of a quartet-steel-tube-column transmission tower", Thin Wall. Struct., 119, 572-585. https://doi.org/10.1016/j.tws.2017.07.006.
  22. Deng, H.Z., Si, R.J., Hu, X.Y. and Duan, C.Y. (2013), "Wind tunnel study on wind-induced vibration responses of an UHV transmission tower-line system", Adv. Struct. Eng., 16(7), 1175-1186. https://doi.org/10.1260/1369-4332.16.7.1175.
  23. Deng, H.Z., Zhang, J.M., Shuai, Q. and Chen, Q. (2010), "Wind-tunnel investigation on pressure coefficient of steel tubular transmission tower", Power Syst. Technol., 34(9), 190-194. https://doi.org/10.13335/j.1000-3673.pst.2010.09.024.
  24. Fang, Q.H. (2016), "Adapting Chinese cities to climate change", Science, 354(6311), 425. https://science.sciencemag.org/content/354/6311/425.2. https://doi.org/10.1126/science.aak9826
  25. Fu, T.C. (2013), "Development of effective approaches to the large-scale aerodynamic testing of low-rise building", Ph.D. Dissertation, Florida International University, Florida.
  26. Guo, Y., Sun, B.N., Ye, Y., Shen, G.H. and Lou, W.J. (2007). "Wind tunnel test on aeroelastic model of long span transmission line system", J. Zhejiang Uni. (Eng. Sci.), 41(9), 2-5. https://doi.org/10.3785/j.issn.1008-973X.2007.09.010.
  27. Hamada, A., King, J.P.C., Damatty, A.A.E., Bitsuamlak, G. and Hamada, M. (2017), "The response of a guyed transmission line system to boundary layer wind", Eng. Struct., 139, 135-152. https://doi.org/10.1016/j.engstruct.2017.01.047.
  28. He, Y.X., Li, Q.X. and Jin, X.H. (2013), "Study on wind Tunnel test for aeroelastic model of 500 kV four circuit transmission tower", Guangdong Elect. Pow., 26(1), 59-64. https://doi.org/10.3969/j.issn.1007-290X.2013.01.014.
  29. Hill, K.A. and Lackmann, G.M. (2009), "Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: sensitivity to turbulence parameterization and grid spacing", Mon. Weather Rev., 137(2), 745-765. https://doi.org/10.1175/2008MWR2220.1.
  30. Huang, M.F., Lou, W.J., Yang, L., Sun, B.N., Shen, G.H. and Tse, K.T. (2012), "Experimental and computational simulation for wind effects on the Zhoushan transmission towers", Struct. Infrastruct. Eng., 8(8), 781-799. https://doi.org/10.1080/15732479.2010.497540.
  31. Irwin, H.P.A.H. (1981), "The design of spires for wind simulation", J. Wind Eng. Ind. Aerod., 7(3), 361-366. https://doi.org/10.1016/0167-6105(81)90058-1.
  32. Jiang, Q. and Deng, H.Z. (2011), "Comparison on wind load prediction of transmission line between Chinese new code and other standards", Procedia Eng., 14(12), 1799-1806. https://doi.org/10.1016/j.proeng.2011.07.226.
  33. Jiang, S.J., Yi, T., Zhang, K.L. and Jiang, X.B. (2017), "Research progress of typhoon damage mechanism of distribution line", Electr. Eng., 18(11), 6-11. https://doi.org/10.3969/j.issn.1673-3800.2017.11.006.
  34. Jing, L.B., Li, J.L., Xu, G.Y. and Yan, X.P. (2008), "Analysis and discussion on lightning disturbance on 110kV transmission line in mountainous area", Proceedings of the 43rd International Universities Power Engineering Conference (UPEC 2008), Padova, Italy, September.
  35. Kareem, A. and Cermak, J.E. (1984), "Pressure fluctuations on a square building model in boundary-layer flows", J. Wind Eng. Ind. Aerod., 16(1), 17-41. https://doi.org/10.1016/0167-6105(84)90047-3.
  36. Kawatani, M. and Kim, H. (1992), "Evaluation of aerodynamic admittance for buffeting analysis", J. Wind Eng. Ind. Aerod., 41(1-3), 613-624. https://doi.org/10.1016/0167-6105(92)90470-U.
  37. Kepert, J.D. (2002), "The wind-field structure of the tropical cyclone boundary-layer", Ph.D. Dissertation, Monash University, Melbourne.
  38. Leatherman, S.P. and Robertson, C.J. (2007), "Wall of wind fullscale destructive testing of coastal houses and hurricane damage mitigation", J. Coastal. Res., 23(5), 1211-1217. https://doi.org/10.2112/07-0829.1.
  39. Li, X.L., Yu, D.K. and Li, Z.L. (2017), "Parameter analysis on wind-induced vibration of UHV cross-rope suspension towerline", Adv. Civil. Eng., 1-9. https://doi.org/10.1155/2017/8756019.
  40. Li, X.Y., Yao, Y., Zhao, B., Wu, H.T., Chen, B. and Yi, T. (2019), "Characteristics and performances of a small-scale model of the closed-circuit multiple controlled fan wind tunnel", Rev. Sci. Instrum., 90(4), 045104. https://doi.org/10.1063/1.5082601.
  41. Li, Z.L., Ren, K., Xiao, Z.Z., Wang, Z.S. and Yu, K. (2011), "Aeroelastic model design and wind tunnel test of UHV transmission line system", Acta Aerodynamica Sinica, 29(1), 102-106. https://doi.org/10.1631/jzus.A1000209.
  42. Li, Z.L., Wei, Q.K. and Sun, Y. (2010), "Influences of mountain topography on response to wind-induced vibration of transmission tower", Power Syst. Technol., 34(11), 214-220. https://doi.org/10.13335/j.1000-3673.pst.2010.11.001.
  43. Li, Z.L., Xiao, Z.Z. and Yan, Z.T. (2009), "Aeroelastic model design and wind tunnel tests of long span transmission line system", Proceedings of the National conference on industrial aerodynamics, Shaoshan, China, November.
  44. Li, Z.L., Xiao, Z.Z., Han, F. and Yan, Z.T. (2008), "Aeroelastic model design and wind tunnel tests of 1000kV Han-jiang long span transmission line system", Power Syst. Technol., 32(12), 1-5. https://doi.org/10.13335/j.1000-3673.pst.2008.12.011.
  45. Liang, S.G., Peng, X.H. and Wang, L. (2014), "Comparative study between field measurement and wind tunnel test of wind pressure on Wuhan international stock building", Appl. Mech. Mater., 590(5), 341-348. https://doi.org/10.15951/j.tmgcxb.2015.05.004.
  46. Liang, S.G., Zou, L.H., Wang, D.H. and Cao, H. (2015), "Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system", Eng. Struct., 85(85), 63-72. https://doi.org/10.1016/j.engstruct.2014.11.042.
  47. Liang, S.G., Zou, L.H., Zhao, L. and Gao, Y.J. (2007), "The investigation of 3-D dynamic wind loads on lattice towers by wind tunnel test", Acta Aerodynamica Sinica, 25(3), 311-318. https://doi.org/10.1142/S1088424610002513.
  48. Liang, S.G., Zou, L.H., Zhao, L. and Gao, Y.J. (2008), "Analytical model of dynamic wind loads on lattice towers", J. Tongji Univ., 36(2), 166-171. https://doi.org/10.3321/j.issn:0253-374X.2008.02.005.
  49. Liang, Z.P. and Li, Z.L. (2009), "An aeroelastic model design of ultra-high voltage power transmission line systems", J. Chongqing Univ., 32(2), 131-136. https://doi.org/10.11835/j.issn.1000-582x.2009.02.003.
  50. Lin, W.E., Savory, E., Mcintyre, R.P., Vandelaar, C.S. and King, J.P.C. (2012), "The response of an overhead electrical power transmission line to two types of wind forcing", J. Wind Eng. Ind. Aerod., 100(1), 58-69. https://doi.org/10.1016/j.jweia.2011.10.005.
  51. Liu, J., Yang, Y.Q., Sun, Y.L. and He, B. (2014), "Simulation study on the wind pressure of village flat roof with parapet based on different wind angles", Appl. Mech. Mater., 638-640, 228-232. https://doi.org/10.4028/www.scientific.net/AMM.638-640.228.
  52. Liu, W.Q., Deng, H.Z. and Jin, X.H. (2013), "Study on wind tunnel test for model of transmission tower in typhoon area", Guangdong Electric Power, 26(2), 57-60. https://doi.org/10.3969/j.issn.1007-290x.2013.02.013.
  53. Liu, Z.Z., Smith, J., Masters, F. and Reinhold, T. (2009), "Assessment of wind storm facility at the insurance center for building safety research", Proceedings of the 7th Asia-Pacific Conference on Wind Engineering, Taipei, Taiwan, November.
  54. Loredo-Souza, A.M. and Davenport, A.G. (2001), "A novel approach for wind tunnel modelling of transmission lines", J. Wind Eng. Ind. Aerod., 89(11-12), 1017-1029. https://doi.org/10.1016/S0167-6105(01)00096-4.
  55. Lou, W.J., Sun, B.N. and Tang, J.C. (2000). "Aeroelastic model investigation and spectral analysis of a tall lattice tower", Adv. Struct. Eng., 3(2), 119-130. https://doi.org/10.1260/1369433001502067.
  56. Luo, J.H. (2015), "Research on wind loads of transmission towers under flat ground and hilly terrain wind field", Master Dissertation, Zhejiang University, Hangzhou, China.
  57. Ma, T.T., Zhao, L., Cao, S.Y., Ge, Y.J. and Miyagi, H. (2013), "Investigations of aerodynamic effects on streamlined box girder using two-dimensional actively-controlled oncoming flow", J. Wind Eng. Ind. Aerod., 122(11), 118-129. https://doi.org/10.1016/j.jweia.2013.07.011.
  58. Momomura, Y., Marukawa, H., Okamura, T., Hongo, E. and Ohkuma, T. (1997), "Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area", J. Wind Eng. Ind. Aerod., 72(1), 241-252. https://doi.org/10.1016/S0167-6105(97)00240-7.
  59. Morgan, W.A., George, G.R., Guse, R.C. and Hatch, M.F. (1956), "Transmission Planning for Mountain Sheep-Pleasant Valley Project", Transactions of the American Institute of Electrical Engineers Part III Power Apparatus & Systems, 75(3), 1297-1305. https://doi.org/10.1109/AIEEPAS.1956.4499436.
  60. Morrison, M.J., Brown, T.M. and Liu, Z. (2012), "Comparison of field and full-scale laboratory peak pressures at the IBHS Research Center", Proceeding of the ATC and SEI Conference on Advances in Hurricane Engineering, Miami, Florida, October.
  61. Nishi, A. and Miyagi, H. (1995), "Computer-controlled wind tunnel for wind-engineering applications", J. Wind Eng. Ind. Aerod., 54-55(94), 493-504. https://doi.org/10.1016/0167-6105(94)00062-I.
  62. Nishi, A., Kikugawa, H., Matsuda, Y. and Tashiro, D. (1997), "Turbulence control in multiple-fan wind tunnels", J. Wind Eng. Ind. Aerod., 67-68(4), 861-872. https://doi.org/10.1016/S0167-6105(97)00124-4.
  63. Nishi, A., Kikugawa, H., Matsuda, Y. and Tashiro, D. (1999), "Active control of turbulence for an atmospheric boundary layer model in a wind tunnel", J. Wind Eng. Ind. Aerod., 83(1-3), 409-419. https://doi.org/10.1016/S0167-6105(99)00089-6.
  64. Nishi, A., Miyagi, H. and Higuchi, K. (1993), "A computer-controlled wind tunnel", J. Wind Eng. Ind. Aerod., 46-47(8), 837-846. https://doi.org/10.1016/0167-6105(93)90360-Z.
  65. Okamura, T., Ohkuma, T., Hongo, E. and Okada, H. (2003), "Wind response analysis of a transmission tower in a mountainous area", J. Wind Eng. Ind. Aerod., 91(1), 53-63. https://doi.org/10.1016/S0167-6105(02)00322-7.
  66. Ozono, S., Miyagi, H. and Wada, K. (2007), "Turbulence generated in active grid mode using a multi-fan wind tunnel", J. Fluid Sci. Technol., 2(3), 643-654. https://doi.org/10.1299/jfst.2.643.
  67. Ozono, S., Nishi, A. and Miyagi, H. (2006), "Turbulence generated by a wind tunnel of multi-fan type in uniformly active and quasi-grid modes", J. Wind Eng. Ind. Aerod., 94(4), 225-240. https://doi.org/10.1016/j.jweia.2006.01.010.
  68. Pang, J.B. and Lin, Z.X. (2008), "Development and experimental study on the active simulation device in boundary layer wind tunnel", J. Exp. Fluid. Mech., 22(3), 80-85. https://doi.org/1672-9897(2008)03-0080-06. https://doi.org/10.3969/j.issn.1672-9897.2008.03.018
  69. Pang, J.B., Lin, Z.X. and Lu, H. (2004), "Discussion on the simulation of atmospheric boundary layer with spires and roughness elements in wind tunnels", Exp. Meas. Fluid Mech., 18(2), 32-37. https://doi.org/1007-3124(2004)02-0032-06. https://doi.org/10.3969/j.issn.1672-9897.2004.02.008
  70. Quarles, S.L., Brown, T.M., Cope, A.D., Lopez, C. and Masters, F.J. (2012), "Water entry through roof sheathing joints and attic vents: A Preliminary Study", Proceeding of ATC and SEI Conference on Advances in Hurricane Engineering, Miami, Florida, October.
  71. Rao, N.P., Knight, G.M.S., Mohan, S.J. and Lakshmanan, N. (2012), "Studies on failure of transmission line towers in testing", Eng. Struct., 35, 55-70. https://doi.org/10.1016/j.engstruct.2011.10.017.
  72. Sill, B.L. (1988), "Turbulent boundary layer profiles over uniform rough surfaces", J. Wind Eng. Ind. Aerod., 31(2), 147-163. https://doi.org/10.1016/0167-6105(88)90002-5.
  73. Smith, J.T. (2011), "Simulation of prescribed boundary flow conditions in a multiple controlled fan wind tunnel", Ph.D. Dissertation, University of Florida, Gainesville, Florida.
  74. Smith, J.T., Masters, F.J., Liu, Z. and Reinhold, T.A. (2012), "A simplified approach to simulate prescribed boundary layer flow conditions in a multiple controlled fan wind tunnel", J. Wind Eng. Ind. Aerod., 109(4), 79-88. https://doi.org/10.1016/j.jweia.2012.04.010.
  75. Standohar A.C.D., Estes, H., Johnston, T., Morrison, M.J. and Brown-Giammanco, T.M. (2017), "Reducing losses from windrelated natural perils: research at the IBHS Research Center", Front. Built. Environ., 3, 1-19. https://doi.org/10.3389/fbuil.2017.00009.
  76. Sumner, D. (2010), "Two circular cylinders in cross-flow: A review", J. Fluid Struct., 26(6), 849-899. https://doi.org/10.1016/j.jfluidstructs.2010.07.001.
  77. Tang, S.Y. and Li, H.N. (2011), "Aeroelastic modeling of transmission towers and similarity ratio for wind-rain loads", J. Vib. Shock, 30(8), 199-202. http://jvs.sjtu.edu.cn/CN/Y2011/V30/I8/199. https://doi.org/10.3969/j.issn.1000-3835.2011.08.039
  78. Teunissen, H.W. (1972), "Simulation of the planetary boundary layer in a multiple-jet wind tunnel", Atmos. Environ., 9(2), 145-174. https://doi.org/10.1016/0004-6981(75)90065-7.
  79. Tian, L. and Zeng, Y. (2016), "Parametric study of tuned mass dampers for long span transmission tower-line system under wind loads", Shock Vib., 8, 1-11. http://dx.doi.org/10.1155/2016/4965056.
  80. Tian, L., Yu, Q.Q., Ma, R.S. and Wang, C.W. (2014), "The collapse analysis of a transmission tower under wind excitation", Open Civil Eng. J., 8(1), 136-142. https://doi.org/10.2174/1874149501408010136.
  81. Tian, L.B., Wang, W.M., Zeng, Y.J. and Tian, L. (2017), "Design study of an aero-elastic model of long span transmission towerline system in wind tunnel", Ind. Constr., 47(5), 74-78. https://doi.org/10.13204/j.gyjz201705015.
  82. Tse, K.T., Li, S.W. and Fung, J.C.H. (2014), "A comparative study of typhoon wind profiles derived from field measurements, meso-scale numerical simulations, and wind tunnel physical modeling", J. Wind Eng. Ind. Aerod., 131, 46-58. https://doi.org/10.1016/j.jweia.2014.05.001.
  83. Wang, D.H., Li, J. and Xie, Q. (2011), "Analytical model for dynamic tension in overhead power transmission lines subject to strong wind", Adv. Struct. Eng., 4(3), 445-456. https://doi.org/10.1260/1369-4332.14.3.445.
  84. Wang, J., Cao, S.Y., Pang, W.C. and Cao, J.X. (2017a), "Experimental study on effects of ground roughness on flow characteristics of tornado-like vortices", Bound-Lay. Meteorol., 162(2), 1-21. https://doi.org/10.1007/s10546-016-0201-6.
  85. Wang, L.J. and Lin, Z.X. (2001), "Experimental Study of Turbulence Effects on Bridge Flutter", J. Tongji Univ., 29(4), 390-395. https://doi.org/0253-374X(2001)04-0390-06. https://doi.org/10.3321/j.issn:0253-374X.2001.04.003
  86. Wang, M.N., Cao, S.Y., Zhu, L.D. and Zhao, L. (2017b), "The multi-fan active control wind tunnel TJ-5", http://mp.weixin.qq.com/s/idD-_ryEMW4GNwYMQHjx3Q.
  87. Wang, S.C., Sun, B.N., Lou, W.J. and Ye, Y. (2005), "Wind tunnel test and theoretical analysis on aeroelastic model of single-rod transmission tower", J. Zhejiang Univ. (Eng. Sci.), 39(1), 88-92. https://doi.org/10.3785/j.issn.1008-973X.2005.01.016.
  88. Wang, X., Huang, P., Yu, X.F., Wang, X.R. and Liu, H.M. (2017c), "Wind characteristics near the ground during typhoon Meari", J. Zhejiang Univ-Sci. A (Appl. Phys. & Eng.), 18(1), 33-48. https://doi.org/10.1631/jzus.A1500310.
  89. Wang, X., Huang, P., Yu, X.F. and Huang, C. (2017d), "Near ground wind characteristics during typhoon meari: turbulence intensities, gust factors, and peak factors", J. Cent. South Univ., 24(10), 2421-2430. https://doi.org/10.1007/s11771-017-3653-z.
  90. Xiao, Z.Z., Li, Z.L., Wang, Z.S., Yan, Z.T. and Ren, K. (2010), "Wind-induced vibration analysis of UHV transmission Tower based on the HFFB tests", Eng. Mech., 27(4), 218-225. https://doi.org/1000-4750(2010)04-0218-08.
  91. Xie, Q. and Sun, L. (2012), "Failure mechanism and retrofitting strategy of transmission tower structures under ice load", J. Constr. Steel. Res., 74, 26-36. https://doi.org/10.1016/j.jcsr.2012.02.003.
  92. Xu, H.W., Lou, W.J., Li, T.H., Liang, H.C., Zhang, L.G. and Lu, M. (2017), "Wind-induced swing investigation on transmission line jumper wire under hilly terrain", J. Zhejiang Univ., 51(2), 264-272. https://doi.org/10.3785/j.issn.1008-973X.2017.02.006.
  93. Yang, F.L., Dang, H.X., Niu, H.W., Zhang, H.J. and Zhu, B.R. (2016), "Wind tunnel tests on wind loads acting on an angled steel triangular transmission tower", J. Wind Eng. Ind. Aerod., 156, 93-103. https://doi.org/10.1016/j.jweia.2016.07.016.
  94. Yang, F.L., Yang, J.B., Niu, H.W. and Zhang, H.J. (2015), "Design wind loads for tubular-angle steel cross-arms of transmission towers under skewed wind loading", J. Wind Eng. Ind. Aerod., 140, 10-18. https://doi.org/10.1016/j.jweia.2015.01.012.
  95. Yao, D. (2014), "Research on characteristics of wind field on hilly terrain and its wind load effect on lattice transmission towers", Master Dissertation, Zhejiang University, Hangzhou, China.
  96. Yao, J.F., Shen, G.H., Lou, W.J., Guo, Y. and Xing, Y.L. (2017), "Wind field characteristics of 3-dimensional hills and their influence on the wind-induced responses of transmission towers", J. Vib. Shock, 36(18), 78-84. https://doi.org/10.13465/j.cnki.jvs.2017.18.012.
  97. You, Y., Yan, Z.T., Chen, J.F., Li, W.S., He, C. and Yan, B.W. (2018), "Numerical simulations on aerodynamic forces of circular steel tubular lattice structures", J. Hunan Univ. (Nat. Sci.), 45(7), 54-60. https://doi.org/10.16339/j.cnki.hdxbzkb.2018.07.007.
  98. Yu, D.K., Li, Z.L., Shi, J.H., Yan, Z.T. and Xiao, Z.Z. (2015), "Wind tunnel test on wind-induced response of 800 kV DC cross-rope suspension tower-line", P. CSEE, 35(40), 1009-1013. https://doi.org/10.13334/j.0258-8013.pcsee.2015.04.031.
  99. Zhang, C.T., Li, Z.L., Fan, W.L., Wang, Z.S. and Sun, Y. (2013), "Effect of occluding hills on wind-induced fatigue of transmission tower- line coupled system", J. Vib. Shock, 32(10), 184-191. https://doi.org/10.13465/j.cnki.jvs.2013.10.034.
  100. Zhang, J.A., Drennan, W.M., Black, P.G. and French, J.R. (2009), "Turbulence structure of the hurricane boundary layer between the outer rainbands", J. Atmos. Sci., 66, 2455-2467. https://doi.org/10.1175/2009JAS2954.1.
  101. Zhang, Q.H, Ma, W.Y. and Zhao, L. (2017), "Wind-induced responses analysis for the typical transmission tower with narrow base based on an aero-elastic model wind tunnel test", J. Vib. Meas. Diag., 37(2), 326-331. https://doi.org/10.16450/j.cnki.issn.1004-6801.2017.02.019.
  102. Zhang, Q.H. and Gu, M. (2014), "Wind-induced response of a 500kV single-circuit transmission tower based on highfrequency force-balance technique", J. Vib. Shock, 33(4), 156-160. https://doi.org/10.3969/j.issn.1000-3835.2014.04.028.
  103. Zhang, Q.H., Gu, M. and Huang, P. (2008), "Experiment on wind force on typical superstructures of latticed transmission tower", J. Vib. Eng., 21(5), 452-457. https://doi.org/10.3724/SP.J.1005.2008.00527.
  104. Zhang, W., Zhu, J., Liu, H.J. and Niu, H.W. (2015), "Probabilistic capacity assessment of lattice transmission towers under strong wind", Front. Built. Environ., (1), 1-12. https://doi.org/10.3389/fbuil.2015.00020.
  105. Zhao, S., Yan, Z.T., Li, Z.L., Dong, J.Y. and Zhong, Y.L. (2018), "Investigation on wind tunnel tests of an aeroelastic model of 1000 kV Sutong long span transmission tower-line system", P. CSEE, 38(17), 5257-5265. https://doi.org/10.13334/j.0258-8013.pcsee.171688.
  106. Zhao, L., Ma, W.Y. and Zhao, Z.X. (2014), "Aeroelastic model design and facture of narrow base transmission tower", Proceedings of the 24th National Conference on Structural Engineering, Lanzhou, China, October.

Cited by

  1. Coaction of Wind and Rain Effects on Large-Span Hyperbolic Roofs vol.2021, 2019, https://doi.org/10.1155/2021/9942223