• Title/Summary/Keyword: typhoon

Search Result 1,272, Processing Time 0.03 seconds

Typhoon wind hazard analysis using the decoupling approach

  • Hong, Xu;Li, Jie
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • Analyzing the typhoon wind hazards is crucial to determine the extreme wind load on engineering structures in the typhoon prone region. In essence, the typhoon hazard analysis is a high-dimensional problem with randomness arising from the typhoon genesis, environmental variables and the boundary layer wind field. This study suggests a dimension reduction approach by decoupling the original typhoon hazard analysis into two stages. At the first stage, the randomness of the typhoon genesis and environmental variables are propagated through the typhoon track model and intensity model into the randomness of the key typhoon parameters. At the second stage, the probability distribution information of the key typhoon parameters, combined with the randomness of the boundary layer wind field, could be used to estimate the extreme wind hazard. The Chinese southeast coastline is taken as an example to demonstrate the adequacy and efficiency of the suggested decoupling approach.

Design and Research for Intelligent Typhoon Evasion System for Ships

  • Wang, Jing-Quan;He, Yi;Shi, Ping-An;Peng, Xiao-Hong;Xu, Zu-Yuan;Qin, Shan-Ci;Li, Qing-Lie;Ding, Bing-Lin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.177-186
    • /
    • 2001
  • Based upon the previous experiences and typical oases of typhoon evasion fur ships as well as tile achievement in scientific research in this detrain, we developed the Intelligent Typhoon Evasion System for Ships. It consists of five subsystems, including electronic charts, ship movement management, typhoon information query and automatic plotting, real-time calculation of ship-typhoon situation, intelligent typhoon evasion decision making. With the synthetical application of analogy theory, synoptic chart, satellite cloud picture analysis, typhoon digital forecast and other relevant technologies, we leave established the typhoon evasion data bases. model bases and knowledge bases, which make it possible to automatically track the ships and typhoon paths. The system can realize ship-typhoon situation analysis, risk levee assessment, typhoon paths correction and course synoptic forecast, and intelligent typhoon evasion decision making.

  • PDF

Comparing the Effect of Both Thermal and Mechanical Forcing on the Error of Typhoon Track (태풍 진로에 영향을 미치는 열적 및 역학적 효과에 관한 수치적 연구)

  • Kim, Hae-Dong;Won, Seong-Hee;Choi, Ki-Seon;Park, Sang-Wook;Jang, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.263-266
    • /
    • 2012
  • To compare the effects of two external forcing on track of typhoon, TWRF(Typhoon WRF) based ensemble experiments are carried out in the case of Typhoon Morako which is the 8th typhoon at Northwest Pacific region in 2009. The two forcing are tropical SST and topography induced thermal and mechanical forcing, respectively. According to the result of numerical experiment for five-day forecast, the effect of mechanical forcing is about two times stronger than thermal forcing on the track error of the typhoon. More case study for other typhoon will be done as a next paper.

A hybrid numerical simulation method for typhoon wind field over complex terrain

  • Huang, Wenfeng;Zhou, Huanlin
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.549-566
    • /
    • 2014
  • In spite of progress in the numerical simulation of typhoon wind field in atmospheric boundary layer (ABL), using typhoon wind field model in conjunction with Monte Carlo simulation method can only accurately evaluate typhoon wind field over a general terrain. This method is not enough for a reliable evaluation of typhoon wind field over the actual complex terrain with surface roughness and topography variations. To predict typhoon wind field over the actual complex terrain in ABL, a hybrid numerical simulation method combined typhoon simulation used the typhoon wind field model proposed by Meng et al. (1995) and CFD simulation in which the Reynolds averaged Navier-Stokes (RANS) equations and k-${\varepsilon}$ turbulence model are used. Typhoon wind filed during typhoon Dujuan and Imbudo are simulated using the hybrid numerical simulation method, and compared with the results predicted by the typhoon wind field model and the wind field measurement data collected by Fugro Geotechnical Services (FGS) in Hong Kong at the bridge site from the field monitoring system of wind turbulence parameters (FMS-WTP) to validate the feasibility and accuracy of the hybrid numerical simulation method. The comparison demonstrates that the hybrid numerical simulation method gives more accurate prediction to typhoon wind speed and direction, because the effect of topography is taken into account in the hybrid numerical simulation method.

VRS-GPS Measure of Typhoon Surge Flood Determinedin Busan Coastal Topography (부산 연안지형 VRS-GPS 계측을 통한 태풍해일 침수예측)

  • Kim, Ga-Ya;Jung, Kwang-Hyo;Kim, Jeong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • A coastal flood area was predicted using the empirical superposition of the typhoon surge level and typhoon wave height along the Busan coastal area. The historical typhoon damages were reviewed, and the coastal topography was measured using VRS-GPS. A FEMA formula was applied to estimate the coastal flood area in a typhoon case when the measured and predicted data of typhoon waves are not available. The results in the area of Haeundae beach and Gwangalli beach were verified using the flood area data from the case of Typhoon Maemi (2003). If a Hurricane Katrina class typhoon were to pass through the Maemi trajectory, the areathat would be flooded along theBusan coastal area was predicted and compared with the results of the Maemi case. Because of the lack of ocean environment data such as data for the sea level, waves, bathymetry, wind, pressure, etc., it is hard to improve the prediction accuracy for the coastal flood area in the typhoon case, which could be reflected in the policy to mitigate a typhoon's impact. This paper discusses the kinds of ocean environment information that is needed to predict a typhoon's impact with better accuracy.

On the Development of Typhoon Avoidance Simulation System with the Evaluating Method by Seakeeping Performance of Ship

  • Song Chae-Uk;Kong Gil-Young;Jin Guo-Zhu
    • Journal of Navigation and Port Research
    • /
    • v.29 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A simulation system is needed to train students and mariners in order that they can take suitable actions to evade typhoon's strike promptly and sufficiently. In order to make such kind of system, three kinds of models about the typhoon are necessary, typhoon prediction model to generate typhoon's track, wind & wave-field model to make sea conditions around the typhoon and evaluation model of trainee's action whether their actions were suitable or not during simulation. We have developed the prediction and wind & wave-field models of typhoon, but the evaluation model has not been developed yet. In this paper, after making a method for evaluating trainee's actions by seakeeping performance, we propose an typhoon avoidance simulation system for training mariners so that they can promote their abilities to evade the typhoons at sea.

Prediction of typhoon design wind speed and profile over complex terrain

  • Huang, W.F.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.1-18
    • /
    • 2013
  • The typhoon wind characteristics designing for buildings or bridges located in complex terrain and typhoon prone region normally cannot be achieved by the very often few field measurement data, or by physical simulation in wind tunnel. This study proposes a numerical simulation procedure for predicting directional typhoon design wind speeds and profiles for sites over complex terrain by integrating typhoon wind field model, Monte Carlo simulation technique, CFD simulation and artificial neural networks (ANN). The site of Stonecutters Bridge in Hong Kong is chosen as a case study to examine the feasibility of the proposed numerical simulation procedure. Directional typhoon wind fields on the upstream of complex terrain are first generated by using typhoon wind field model together with Monte Carlo simulation method. Then, ANN for predicting directional typhoon wind field at the site are trained using representative directional typhoon wind fields for upstream and these at the site obtained from CFD simulation. Finally, based on the trained ANN model, thousands of directional typhoon wind fields for the site can be generated, and the directional design wind speeds by using extreme wind speed analysis and the directional averaged mean wind profiles can be produced for the site. The case study demonstrated that the proposed procedure is feasible and applicable, and that the effects of complex terrain on design typhoon wind speeds and wind profiles are significant.

Disaster Characteristics Analysis at Busan Coastal Areas by Typhoon Maemi in 2003 (2003년 태풍 매미로 인한 부산 연안지역의 재해특성 분석)

  • 서규우
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.25-32
    • /
    • 2004
  • We surveyed the coastal structure damage created by typhoon ‘Maemi’, which heavily struck the Korean peninsula on September 12, 2003. The survey revealed that high tides and strong winds induced by the typhoon were the main causes of the coastal damage, especially in the Busan areas. Though some experimental real-time coastal monitoring stations captured the typhoon movements at the critical time, more systematic and complete system should be implemented to save human lives and property from huge typhoon disasters.

Evaluation of the Intensity Predictability of the Numerical Models for Typhoons in 2013 (2013년 태풍에 대한 수치모델들의 강도 예측성 평가)

  • Kim, Ji-Seon;Lee, Woojeong;Kang, KiRyong;Byun, Kun-Young;Kim, Jiyoung;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.419-432
    • /
    • 2014
  • An assessment of typhoon intensity predictability of numerical models was conducted to develop the typhoon intensity forecast guidance comparing with the RSMC-Tokyo best track data. Root mean square error, box plot analysis and time series of wind speed comparison were performed to evaluate the each model error level. One of noticeable fact is that all models have a trend of error increase as typhoon becomes stronger and the Global Forecast System showed the best performance among the models. In the detailed analysis in two typhoon cases [Danas (1324) and Haiyan (1330)], GFS showed good performance in maximum wind speed and intensity trend in the best track, however it could not simulate well the rapid intensity increasing period. On the other hand, ECMWF and Hurricane-WRF overestimated the typhoon intensity but simulated track trend well.

Variation Analysis of Storm Surges in Masan Bay due to Typhoon Landing-1. Extreme Simulation Typhoon Scenario (상륙 태풍에 의한 마산만 폭풍해일 변동성 분석 - 1. 극치 모의 태풍 시나리오의 결정)

  • Han, Sungdae
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.493-505
    • /
    • 2015
  • Based on the typhoon paths landed on the southern coast of Korea, the distribution of typhoon moving directions follow the Beta probability density function and that of pressure drops in typhoon eyes follow the Rayleigh probability density function. Consequently, the extreme typhoon simulation scenarios for six landing positions are determined as most probable one in moving direction and extreme one of Typhoon Maemi level in pressure drop. The variation of storm surges in Masan bay associated with simulated typhoon landing position is analyzed through the numerical experiments in the next paper as the second part.