• Title/Summary/Keyword: transmembrane

Search Result 592, Processing Time 0.024 seconds

Luteolin reduces fluid hypersecretion by inhibiting TMEM16A in interleukin-4 treated Calu-3 airway epithelial cells

  • Kim, Hyun Jong;Woo, JooHan;Nam, Yu-Ran;Seo, Yohan;Namkung, Wan;Nam, Joo Hyun;Kim, Woo Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.329-338
    • /
    • 2020
  • Rhinorrhea in allergic rhinitis (AR) is characterized by the secretion of electrolytes in the nasal discharge. The secretion of Cl- and HCO3- is mainly regulated by cystic fibrosis transmembrane conductance regulator (CFTR) or via the calcium-activated Cl- channel anoctamin-1 (ANO1) in nasal gland serous cells. Interleukin-4 (IL-4), which is crucial in the development of allergic inflammation, increases the expression and activity of ANO1 by stimulating histamine receptors. In this study, we investigated ANO1 as a potential therapeutic target for rhinorrhea in AR using an ANO1 inhibitor derived from a natural herb. Ethanolic extracts (30%) of Spirodela polyrhiza (SPEtOH) and its five major flavonoids constituents were prepared. To elucidate whether the activity of human ANO1 (hANO1) was modulated by SPEtOH and its chemical constituents, a patch clamp experiment was performed in hANO1-HEK293T cells. Luteolin, one of the major chemical constituents in SPEtOH, significantly inhibited hANO1 activity in hANO1-HEK293T cells. Further, SPEtOH and luteolin specifically inhibited the calcium-activated chloride current, but not CFTR current in human airway epithelial Calu-3 cells. Calu-3 cells were cultured to confluency on transwell inserts in the presence of IL-4 to measure the electrolyte transport by Ussing chamber. Luteolin also significantly inhibited the ATP-induced increase in electrolyte transport, which was increased in IL-4 sensitized Calu-3 cells. Our findings indicate that SPEtOH and luteolin may be suitable candidates for the prevention and treatment of allergic rhinitis. SPEtOH- and luteolin-mediated ANO1 regulation provides a basis for the development of novel approaches for the treatment of allergic rhinitis-induced rhinorrhea.

Identification of Immunodominant B-cell Epitope Regions of Reticulocyte Binding Proteins in Plasmodium vivax by Protein Microarray Based Immunoscreening

  • Han, Jin-Hee;Li, Jian;Wang, Bo;Lee, Seong-Kyun;Nyunt, Myat Htut;Na, Sunghun;Park, Jeong-Hyun;Han, Eun-Taek
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.4
    • /
    • pp.403-411
    • /
    • 2015
  • Plasmodium falciparum can invade all stages of red blood cells, while Plasmodium vivax can invade only reticulocytes. Although many P. vivax proteins have been discovered, their functions are largely unknown. Among them, P. vivax reticulocyte binding proteins (PvRBP1 and PvRBP2) recognize and bind to reticulocytes. Both proteins possess a C-terminal hydrophobic transmembrane domain, which drives adhesion to reticulocytes. PvRBP1 and PvRBP2 are large (>326 kDa), which hinders identification of the functional domains. In this study, the complete genome information of the P. vivax RBP family was thoroughly analyzed using a prediction server with bioinformatics data to predict B-cell epitope domains. Eleven pvrbp family genes that included 2 pseudogenes and 9 full or partial length genes were selected and used to express recombinant proteins in a wheat germ cell-free system. The expressed proteins were used to evaluate the humoral immune response with vivax malaria patients and healthy individual serum samples by protein microarray. The recombinant fragments of 9 PvRBP proteins were successfully expressed; the soluble proteins ranged in molecular weight from 16 to 34 kDa. Evaluation of the humoral immune response to each recombinant PvRBP protein indicated a high antigenicity, with 38-88% sensitivity and 100% specificity. Of them, N-terminal parts of PvRBP2c (PVX_090325-1) and PvRBP2 like partial A (PVX_090330-1) elicited high antigenicity. In addition, the PvRBP2-like homologue B (PVX_116930) fragment was newly identified as high antigenicity and may be exploited as a potential antigenic candidate among the PvRBP family. The functional activity of the PvRBP family on merozoite invasion remains unknown.

Characterization of Root Transcriptome among Korean Ginseng Cultivars and American Ginseng using Next Generation Sequencing (차세대염기서열 분석을 이용한 고려인삼과 미국삼의 전사체 분석)

  • Jo, Ick Hyun;Kim, Young Chang;Lee, Seung Ho;Kim, Jang Uk;Kim, Sun Tae;Hyun, Dong Yun;Kim, Dong Hwi;Kim, Kee Hong;Kim, Hong Sig;Chung, Jong Wook;Bang, Kyong Hwan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.5
    • /
    • pp.339-348
    • /
    • 2014
  • The transcriptomes of four ginseng accessions such as Cheonryang (Korean ginseng cultivar), Yunpoong (Korean ginseng cultivar), G03080 (breeding line of Korean ginseng), and P. quinquefolius (American ginseng) was characterized. As a result of sequencing, total lengths of the reads in each sample were 156.42 Mb (Cheonryang cultivar), 161.95 Mb (Yunpoong cultivar), 165.07 Mb (G03080 breeding line), and 166.48 Mb (P. quinquefolius). Using a BLAST search against the Phytozome databases with an arbitrary expectation value of 1E-10, over 20,000 unigenes were functionally annotated and classified using DAVID software, and were found in response to external stress in the G03080 breeding line, as well as in the Cheonryang cultivar, which was associated with the ion binding term. Finally, unigenes related to transmembrane transporter activity were observed in Cheonryang and P. quinquefolius, which involves controlling osmotic pressure and turgor pressure within the cell. The expression patterns were analyzed to identify dehydrin family genes that were abundantly detected in the Cheonryang cultivar and the G03080 breeding line. In addition, the Yunpoong cultivar and P. quinquefolius accession had higher expression of heat shock proteins expressed in Ricinus communis. These results will be a valuable resource for understanding the structure and function of the ginseng transcriptomes.

The Role and Regulation of MCL-1 Proteins in Apoptosis Pathway

  • Bae, Jeehyeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2002.07a
    • /
    • pp.113-113
    • /
    • 2002
  • Phylogenetically conserved Bcl-2 family proteins play a pivotal role in the regulation of apoptosis from virus to human. Members of the Bcl-2 family consist of antiapoptotic proteins such as Bcl-2, Bcl-xL, and Bcl-w, and proapoptotic proteins such as BAD, Bax, BOD, and Bok. It has been proposed that anti- and proapoptotic Bcl-2 proteins regulate cell death by binding to each other and forming heterodimers. A delicate balance between anti- and proapoptotic Bcl-2 family members exists in each cell and the relative concentration of these two groups of proteins determines whether the cell survives or undergoes apoptosis. Mcl-1 (Myeloid cell :leukemia-1) is a member of the Bcl-2 family proteins and was originally cloned as a differentiation-induced early gene that was activated in the human myeloblastic leukemia cell line, ML-1 . Mcl-1 is expressed in a wide variety of tissues and cells including neoplastic ones. We recently identified a short splicing variant of Mcl-1 short (Mcl-IS) and designated the known Mcl-1 as Mcl-1 long (Mcl-lL). Mcl-lL protein exhibits antiapoptotic activity and possesses the BH (Bcl-2 homology) 1, BH2, BH3, and transmembrane (TM) domains found in related Bcl-2 proteins. In contrast, Mcl-1 S is a BH3 domain-only proapoptotic protein that heterodimerizes with Mcl-lL. Although both Mc1-lL and Mcl-lS proteins contain BH domains fecund in other Bcl-2 family proteins, they are distinguished by their unusually long N-terminal sequences containing PEST (proline, glutamic acid, serine, and threonine) motifs, four pairs of arginine residues, and alanine- and glycine-rich regions. In addition, the expression pattern of Mcl-1 protein is different from that of Bcl-2 suggesting a unique role (or Mcl-1 in apoptosis regulation. Tankyrasel (TRF1-interacting, ankyrin-related ADP-related polymerasel) was originally isolated based on its binding to TRF 1 (telomeric repeat binding factor-1) and contains the sterile alpha motif (SAM) module, 24 ankyrin (ANK) repeats, and the catalytic domain of poly(adenosine diphosphate-ribose) polymerase (PARP). Previous studies showed that tankyrasel promotes telomere elongation in human cells presumably by inhibiting TRFI though its poly(ADP-ribosyl)action by tankyrasel . In addition, tankyrasel poly(ADP-ribosyl)ates Insulin-responsive amino peptidase (IRAP), a resident protein of GLUT4 vesicles, and insulin stimulates the PARP activity of tankyrase1 through its phosphorylation by mitogen-activated protein kinase (MAPK). ADP-ribosylation is a posttranslational modification that usually results in a loss of protein activity presumably by enhancing protein turnover. However, little information is available regarding the physiological function(s) of tankyrase1 other than as a PARP enzyme. In the present study, we found tankyrasel as a specific-binding protein of Mcl-1 Overexpression of tankyrasel led to the inhibition of both the apoptotic activity of Mel-lS and the survival action of Mcl-lL in mammalian cells. Unlike other known tankyrasel-interacting proteins, tankyrasel did not poly(ADP-ribosyl)ate either of the Mcl-1 proteins despite its ability to decrease Mcl-1 proteins expression following coexpression. Therefore, this study provides a novel mechanism to regulate Mcl-1-modulated apoptosis in which tankyrasel downregulates the expression of Mcl-1 proteins without the involvement of its ADP-ribosylation activity.

  • PDF

β-lapachone-Induced Apoptosis of Human Gastric Carcinoma AGS Cells Is Caspase-Dependent and Regulated by the PI3K/Akt Pathway

  • Yu, Hai Yang;Kim, Sung Ok;Jin, Cheng-Yun;Kim, Gi-Young;Kim, Wun-Jae;Yoo, Young Hyun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.184-192
    • /
    • 2014
  • ${\beta}$-lapachone is a naturally occurring quinone that selectively induces apoptotic cell death in a variety of human cancer cells in vitro and in vivo; however, its mechanism of action needs to be further elaborated. In this study, we investigated the effects of ${\beta}$-lapachone on the induction of apoptosis in human gastric carcinoma AGS cells. ${\beta}$-lapachone significantly inhibited cellular proliferation, and some typical apoptotic characteristics such as chromatin condensation and an increase in the population of sub-G1 hypodiploid cells were observed in ${\beta}$-lapachone-treated AGS cells. Treatment with ${\beta}$-lapachone caused mitochondrial transmembrane potential dissipation, stimulated the mitochondria-mediated intrinsic apoptotic pathway, as indicated by caspase-9 activation, cytochrome c release, Bcl-2 downregulation and Bax upregulation, as well as death receptor-mediated extrinsic apoptotic pathway, as indicated by activation of caspase-8 and truncation of Bid. This process was accompanied by activation of caspase-3 and concomitant with cleavage of poly(ADP-ribose) polymerase. The general caspase inhibitor, z-VAD-fmk, significantly abolished ${\beta}$-lapachone-induced cell death and inhibited growth. Further analysis demonstrated that the induction of apoptosis by ${\beta}$-lapachone was accompanied by inactivation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. The PI3K inhibitor LY29004 significantly increased ${\beta}$-lapachone-induced apoptosis and growth inhibition. Taken together, these findings indicate that the apoptotic activity of ${\beta}$-lapachone is probably regulated by a caspase-dependent cascade through activation of both intrinsic and extrinsic signaling pathways, and that inhibition of the PI3K/Akt signaling may contribute to ${\beta}$-lapachone-mediated AGS cell growth inhibition and apoptosis induction.

A Novel Complement Fixation Pathway Initiated by SIGN-R1 Interacting with C1q in Innate Immunity

  • Kang, Young-Sun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.23-25
    • /
    • 2008
  • Serum complement proteins comprise an important system that is responsible for several innate and adaptive immune defence mechanisms. There were three well described pathways known to lead to the generation of a C3 convertase, which catalyses the proteolysis of complement component C3, and leads to the formation of C3 opsonins (C3b, iC3b and C3d) that fix to bacteria. A pivotal step in the complement pathway is the assembly of a C3 convertase, which digests the C3 complement component to form microbial-binding C3 fragments recognized by leukocytes. The spleen clears microorganisms from the blood. Individuals lacking this organ are more susceptible to Streptococcus pneumoniae. Innate resistance to S. pneumoniae has previously been shown to involve complement components C3 and C4, however this resistance has only a partial requirement for mediators of these three pathways, such as immunoglobulin, factor B and mannose-binding lectin. Therefore it was likely that spleen and complement system provide resistance against blood-borne S. pneumoniae infection through unknown mechanism. To better understand the mechanisms involved, we studied Specific intracellular adhesion molecule-grabbing nonintegrin (SIGN)-R1. SIGN-R1, is a C-type lectin that is expressed at high levels by spleen marginal-zone macrophages and lymph-node macrophages. SIGN-R1 has previously been shown to be the main receptor for bacterial dextrans, as well as for the capsular pneumococcal polysaccharide (CPS) of S. pneumoniae. We examined the specific role of this receptor in the activation of complement. Using a monoclonal antibody that selectively downregulates SIGN-R1 expression in vivo, we show that in response to S. pneumoniae or CPS, SIGN-R1 mediates the immediate proteolysis of C3 and fixation of C3 opsonins to S. pneumoniae or to marginal-zone macrophages that had taken up CPS. These data indicate that SIGN-R1 is largely responsible for the rapid C3 convertase formation induced by S. pneumoniae in the spleen of mice. Also, we found that SIGN-R1 directly binds C1q and that C3 fixation by SIGN-R1 requires C1q and C4 but not factor B or immunoglobulin. Traditionally C3 convertase can be formed by the classical C1q- and immunoglobulin-dependent pathway, the alternative factor-B-dependent pathway and the soluble mannose-binding lectin pathway. Furthermore Conditional SIGN-R1 knockout mice developed deficits in C3 catabolism when given S. pneumoniae or its capsular polysaccharide intravenously. There were marked reductions in proteolysis of serum C3, deposition of C3 on organisms within SIGN-$R1^+$ spleen macrophages, and formation of C3 ligands. The transmembrane lectin SIGN-R1 therefore contributes to innate resistance by an unusual C3 activation pathway. We propose that in the SIGN-R1 mediated complement activation pathway, after binding to polysaccharide, SIGN-R1 captures C1q. SIGN-R1 can then, in association with several other complement proteins including C4, lead to the formation of a C3 convertase and fixation of C3. Therefore, this new pathway for C3 fixation by SIGN-R1, which is unusual as it is a classical C1q-dependent pathway that does not require immuno globulin, contributes to innate immune resistance to certain encapsulated microorganisms.

  • PDF

Molecular Biologic Analysis of c-kit Gene in Salivary Gland Carcinoma (타액선암에서 c-kit 유전자에 대한 분자생물학적 연구)

  • Seo Kyu-Hwan;Jung Kwang-Yoon;Woo Jung-Soo;Baek Seung-Kuk;Choi Sung-Bae;Kim Sang-Hee;Kim In-Sun;Kwon Soon-Young
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • Objectives: The c-kit gene encodes a transmembrane receptor-type tyrosine kinase, which is known to have a significant role in the normal migration and development of germ cells and melanocytes. In the previous studies of c-kit gene, c-kit expressions showed only in adenoid cystic carcinomas, lymphoepithelioma-like carcinomas and myoepithelial carcinomas, but not in others and mutation was not found in any types of salivary carcinoma. We investigate the c-kit expression which may be useful to differentiating adenoid cystic carcinomas from others, and mutation of the gene which may not be exist nor the mechanism of c-kit activation in salivary carcinomas. Material and Methods: The archival tissue samples from 42 salivary carcinomas of major and minor salivary glands were studied for c-kit expression by immunohistochemistry and gene mutation by polymerase chain reaction amplification and single strand conformational polymorphism. Results: The c-kit expressions were noted in 22/24 adenoid cystic carcinomas, 7/9 mucoepidermoid carcinomas, 2/3 acinic cell carcinomas, 3/4 malignant mixed tumors, and one undifferentiated carcinoma. The mutation of c-kit gene was found in 3/24 adenoid cystic carcinomas, 3/8 mucoepidermoid carcinomas, one acinic cell carcinoma, and 2/4 malignant mixed tumors. Conclusion: c-kit protein overexpression is seen in a variety of salivary gland carcinomas, and the mutation of the gene may be the mechanism of c-kit activation in these neoplasms.

Continuously Recycling Sterilization of Yakju(Rice Wine) Using Pulsed Electric Fields (고전장펄스를 이용한 약주의 연속 재순환 살균)

  • Kim, Su-Yeon;Mok, Chul-Kyoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.410-415
    • /
    • 1999
  • Yakju was sterilized with high-voltage pulses of short time of a continuous pulsed electric field (PEF) system. The initial microbial counts of Yakju were $2.2{\times}10^{5}$ CFU/mL for total aerobes. The pH, acidity and electric conductivity of Yakju were 3.82, 0.37% and 1.24 mS/cm, respectively. Yakju was treated with exponential-wave formed electric pulses of 100 Hz for $0{\sim}4000{\mu}s$ under the field strength of $20{\sim}35\;kV/cm$. The lethal effect of electric fields on microorganisms was resulted from the breakdown of the cell membrane induced by the transmembrane electric potential. The critical values of the external field for the sterilization were 16.0 kV/cm for total aerobes. Logarithmic survival rates decreased linearly at low electric field strength, but curvilinearly at high electric field strength with treatment time. The sterilization of Yakju was more largely affected by the electric field strength than by the treatment time. Any changes in pH, acidity, and the growth of microorganisms were not found in the PEF treated Yakju during the storage at both $4^{\circ}C\;and\;30^{\circ}C$.

  • PDF

Camphor Inhibits Adipocyte Differentiation via Its Impact on SMO-dependent Regulation of Hedgehog Signaling (Camphor의 Hedgehog 신호 SMO 조절을 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Lee, Ja Bok;Yang, Yung Hun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.973-982
    • /
    • 2020
  • In this study, we examined inhibition of adipocyte differentiation associated with the administration of camphor, a substance identified in extracts of the flowering plant Chrysanthemum indicum L. (CI). No camphor-mediated cytotoxicity was observed over a period of 1-10 days in studies targeting cells of the 3T3-L1 adipocyte-like line. Experiments that featured siRNA-mediated suppression of the transmembrane proteins Patched (PTCH) and Smoothened (SMO) resulted in inhibition and activation of differentiation, respectively. Interestingly, inhibition of PTCH typically activates SMO protein targeting and serves to activate hedgehog (HH)-mediated signaling. The results of our study suggest that activation of HH-mediated signaling can inhibit adipocyte differentiation. Furthermore, expression of glioma-associated oncogene homologue 1 (Gli1) was detected by flow cytometry in 62.7±1.5% of cells in response to administration of Lactobacillus rhamnosus (KCTC 3237) and in 60.4±2.2% of cells in response to camphor; these levels are higher than those detected in undifferentiated controls (24.9±3.1%). No change in the state of fermented camphor was identified by gas chromatography-mass spectrometry (GC-MS), but a 15.41% quantitative increase was confirmed in KCTC 3237. Overall, we conclude that administration of camphor resulted in overexpression of SMO and modulated the differential expression of Gli1. Animal studies focused on the impact of camphor as an agent to counteract obesity might be considered in the future. Indeed, camphor and similar physiologically active compounds from fermented CI might be developed as new and effective treatments for obesity.

The Substates with Mutants That Negatively Charged Aspartate in Position 172 Was Replaced with Positive Charge in Murine Inward Rectifier Potassium Channel (Murine Kir2.1)

  • So, I.;Ashmole, I.;Stanfield, P.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.267-273
    • /
    • 2003
  • We have investigated the effect on inducing substate(s) of positively charged residues replaced in position 172 of the second transmembrane domain in murine inward rectifier potassium channels, formed by stable or transient transfection of Kir2.1 gene in MEL or CHO cells. Single channel recordings were obtained from either cell-attached patches or inside-out patches excised into solution containing 10 mM EDTA to rule out the effect of $Mg^{2+}$ on the channel gating. The substate(s) could be recorded with all mutants D172H, D172K and D172R. The unitary current-voltage (I-V) relation was not linear with D172H at $pH_i$ 6.3, whereas the unitary I-V relation was linear at $pH_i$ 8.0. The relative occupancy at $S_{LC}$ was increased from 0.018 at $pH_i$ 8.0 to 0.45 at $pH_i$ 5.5. In H-N dimer, that was increased from 0.016 at $pH_i$ 8.0 to 0.23 at $pH_i$ 5.5. The larger the size of the side chain or $pK_a$ with mutants (D172H, D172K and D172R), the more frequent the transitions between the fully open state and substate within an opening. The conductance of the substate also depended upon the pKa or the size of the side chain. The relative occupancy at substate $S_{LC}$ with monomer D172K (0.50) was less than that in K-H dimer (0.83). However, the relative occupancy at substate with D172R (0.79) was similar to that with R-N dimer (0.82). In the contrary to ROMK1, positive charge as well as negative charge in position 172 can induce the substate rather than block the pore in murine Kir2.1. The single channel properties of the mutant, that is, unitary I-V relation, the voltage dependence of the mean open time and relative occupancy of the substates and the increased latency to the first opening, explain the intrinsic gating observed in whole cell recordings.