• Title/Summary/Keyword: transition temperature

Search Result 2,879, Processing Time 0.028 seconds

Effect of Microstructural Factors on Room- and Low-Temperature Impact Toughness of Hypoeutectoid Steels with Ferrite-Pearlite Structure (페라이트-펄라이트 조직 아공석강의 상온 및 저온 충격 인성에 미치는 미세조직적 인자의 영향)

  • Lee, Seung-Yong;Jeong, Sang-Woo;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.583-589
    • /
    • 2015
  • This paper presents a study on the room- and low-temperature impact toughness of hypoeutectoid steels with ferrite-pearlite structures. Six kinds of hypoeutectoid steel specimens were fabricated by varying the carbon content and austenitizing temperature to investigate the effect of microstructural factors such as pearlite volume fraction, interlamellar spacing, and cementite thickness on the impact toughness. The pearlite volume fraction usually increased with increasing carbon content and austenitizing temperature, while the pearlite interlamellar spacing and cementite thickness mostly decreased with increasing carbon content and austenitizing temperature. The 30C steel with medium pearlite volume fraction and higher manganese content, on the other hand, even though it had a higher volume fraction of pearlite than did the 20C steel, showed a better low-temperature toughness due to its having the lowest ductile-brittle transition temperature. This is because various microstructural factors in addition to the pearlite volume fraction largely affect the ductile-brittle transition temperature and low-temperature toughness of hypoeutectoid steels with ferrite-pearlite structure. In order to improve the room- and low-temperature impact toughness of hypoeutectoid steels with different ferrite-pearlite structures, therefore, more systematic studies are required to understand the effects of various microstructural factors on impact toughness, with a viewpoint of ductile-brittle transition temperature.

AC Insulation Breakdown Properties of the EMNC to Application of Distribution Molded Transformer (배전용 몰드변압기 적용을 위한 EMNC의 교류절연파괴특성 연구)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.649-656
    • /
    • 2013
  • A conventional epoxy-microsilica composite (EMC) and an epoxy-microsilica-nanosilicate composite (EMNC) were prepared in order to apply them to mold-type transformers, current transformers (CT) and potential transformers (PT). Nanosilicate was exfoliated in a epoxy resin using our electric field dispersion process and AC insulation breakdown strength at $30{\sim}150^{\circ}C$, glass transition temperature and viscoelasticity were studied. AC insulation breakdown strength of EMNC was higher than that of EMC and that value of EMNC was far higher at high temperature. Glass transition temperature and viscoelasticity property of EMNC was higher than those of EMC at high temperature. These results was due to the even dispersion of nanosilicates among the nanosilicas, which could be observed using transmission electron microscopy (TEM). That is, the nanosilicates interrupt the electron transfer and restrict the mobility of the epoxy chains.

Prediction of Fracture Appearance Transition Temperature(FATT) to Steel by Ultrasonic and Barkhausen Noise Method (초음파와 Barkhausen Noise에 의한 강의 연.취성천이온도 예측)

  • Nam, Young-Hyun;Seong, Un-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1215-1222
    • /
    • 1999
  • It is advantageous to use an NDE method to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the material/component. This paper shows that the ultrasonic and the Barkhausen noise(BHN) methods can be used to accurately characterize forged reactor vessels. The attenuation coefficient of the ultrasonic wave was changed with heat treatment temperature and condition[as-quenched, tempered, PWHT]. The RMS[root mean square] voltage of Barkhausen noise depended on heat treatment temperature and conditions. The fracture appearance transition temperature(FATT) can be predicted using nondestructive evaluation methods.

Electrical Resistivity and NTC/PTC Transition Point of a Nitrogen-Doped SiC Igniter, and Their Correlation to Electrical Heating Properties

  • Jeon, Young-Sam;Shin, Hyun-Ho;Yoo, Dong-Joo;Yoon, Sang-Ok
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.124-129
    • /
    • 2012
  • An M-shaped SiC gas igniter was fabricated by a reaction sintering followed by nitrogen doping. The igniter showed both resistivity at room temperature and NTC to PTC transition temperature values that were lower than those of commercial igniters. It was deduced that the doped nitrogen reduces the electrical resistivity at room temperature, while, at high temperature, the doped nitrogen and a trace of $Si_3N_4$ phase work as scattering centers against electron transfer, resulting in a lowered NTC-to-PTC transition point (below $650^{\circ}C$). Such characteristics were correlated to the fast heating speed (as compared to the commercial models) and to the prevention of the high temperature overshooting of the nitrogen-doped SiC igniter.

Statistical Evaluation of Fracture Characteristics of RPV Steels in the Ductile-Brittle Transition Temperature Region

  • Kang, Sung-Sik;Chi, Se-Hwan;Hong, Jun-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.364-376
    • /
    • 1998
  • The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a $K_{IC}$ -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel (RPV) steel. Most of the fracture toughness data were within the 95% confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data.

  • PDF

Thermoelectric Property and p-n Transition Mechanism of Hot Pressed Bi4/3Sb2/3Te3 ($Bi_{4/3}Sb_{2/3}Te_3$ 가압소결체의 열전특성과 p-n 전이기구)

  • 박태호;유한일;심재동
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.855-862
    • /
    • 1992
  • Thermoelectric power, electrical conductivity and Hall effect were measured, as functions of temperature in the range of 100 to 600 K, on polycrystalline Bi4/3Sb2/3Te3 which had been prepared via uniaxial hot-pressing at different temperatures in the range of 373 K to 773 K, aiming at searching a profitable processing route to a polycrystalline thermoelectric material, a promising, viable alternative to a single crystalline one. It was found that, with increasing temperature of pressing under a fixed pressure, the material, normally a p-type prior to being hot-pressed, underwent a transition to n-type. This transition was confirmed to be due to plastic deformation during hot-pressing and interpreted as being attributed to the change of the major ionic defect BiTe' into TeBi˙at temperature high enough for structure elements mobility. Thermoelectric figure-of-merit of the hot-pressed material was discussed in connection with the p-n transition in addition to microstructure.

  • PDF

A study on phase transition of Hydrogel: (I)Volume Phase Transition of N-Isopropylacrylamide gel (수화겔의 상전이에 관한 연구: (I)폴리(N-이소프로필아크릴아미드)겔의 부피상전이)

  • Park, Sang-Bo;Min, Seong-Kee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Equilibrium swelling curves of N-isopropyl acrylamide(NIPA) gel and its ionized copolymer gels were obtained as a function of temperature. Discontinuous volume changes of the gels were observed. Phase transition temperature was increased with the ionized counter parts of the gels. Equilibrium swelling of ionized copolymer gel cylinder was found to depend strongly on their diameters. Crosslinking density of NIPA gel was adjusted by increasing N,N'-methylenebisacrylamide(BIS). Phase transition temperature was increased with the crosslinking density.

  • PDF

A Study the Behavior of Plastic Deformation in Weld HAZ of Mild Steel (軟鋼 熔接熱影響部의 塑性變形擧動에 關한 硏究 II)

  • 박창언;정세희
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.43-51
    • /
    • 1992
  • The plastic zone formed around a notch tip is important in analyzing the fracture toughness of structures and particularly weld cracks existed in the weld HAZ (heat affected zone) which produces local plastic deformation at the crack tip. Therefore, in order to analyze the fracture toughness in weld HAZ, it is necessary to investigate the new fracture toughness parameter $K_{c}$ $^{*}$ and critical plastic strain energy $W_{p}$ $^{c}$ according to the shape and size of the plastic zone. 1) If the temperature corresponding to $K_{c}$ $^{*}$=130kg-m $m^{-3}$ 2/ is determined, transition temperature $T_{tr}$ the magnitude of plastic zone size, and heat input change depending on the fracture toughness. The blunted amounts of the parent and weld HAZ show mild linear variation until .delta.=0.4mm and then increase very steeply there after. 2) The relation between the plastic strain energy( $W^{p}$ ) and transition temperature( $T_{*}$tr) in parent metal is more sensitive than that of weld HAZ. However, the plastic strain energy depends on the transition temperature, and thus the yield stress, .sigma.$_{ys}$ becomes an important parameter for plastic strain energy. 3) The critical plastic strain energy( $W_{p}$ $^{c}$ ) absorbed by the plastic zone at the notch tip indicated in case of parent metal: 60J/mm, in case of heat input(20KJ/cm): 75J/mm, in case of heat input(30KJ/cm); 50J/mmJ/mm.

  • PDF

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

Ferroelectric Phase Transition of Lead Free (1-x)(Na0.5K0.5)NbO3-xLiNbO3 Ceramics

  • Park, Jong-Ho;Park, Hui-Jin;Choi, Byung-Chun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.297-300
    • /
    • 2012
  • Lead-free (1-x)$(Na_{0.5}K_{0.5})NbO_3-xLiNbO_3$, i.e., NKN-LNx (x=0.0, 0.1, 0.2, 0.3, 0.4 mol) was prepared using the conventional solid state reaction method. The effects of LN mixing on the ferroelectric properties of NKN-LNx ceramics were studied using a dielectric constant and P-E (Polarization-electric field) measurements. Ferroelectricity was observed in the composition for x approximately varying between 0.0 and 0.4. Minimum remanent polarization $2P_r=5C/cm^2$ was achieved in the composition for x = 0.2. The ferroelectric phase transition temperature $T_C$ increased with increasing LN content. The ferroelectric phase transition of NKN-LNx ($x{\geq}0.1$) is a second-order phase transition, and that of NKN-LNx ($x{\leq}0.2$) is a first-order phase transition. These results indicate that the ferroelectric phase transition temperature of NKN-LNx change from that of second-order to weak first-order phase transition according to the LN content.