• Title/Summary/Keyword: transition temperature

Search Result 2,879, Processing Time 0.024 seconds

A Theoretical Study on the Low Transition Temperature of VO2 Metamaterials in the THz Regime

  • Kyoung, Jisoo
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.583-589
    • /
    • 2022
  • Vanadium dioxide (VO2) is a well-known material that undergoes insulator-to-metal phase transition near room temperature. Since the conductivity of VO2 changes several orders of magnitude in the terahertz (THz) spectral range during the phase transition, VO2-based active metamaterials have been extensively studied. Experimentally, it is reported that the metal nanostructures on the VO2 thin film lowers the critical temperature significantly compared to the bare film. Here, we theoretically studied such early transition phenomena by developing an analytical model. Unlike experimental work that only measures transmission, we calculate the reflection and absorption and demonstrate that the role of absorption is quite different for bare and patterned samples; the absorption gradually increases for bare film during the phase transition, while an absorption peak is observed at the critical temperature for the metamaterials. In addition, we also discuss the gap width and VO2 thickness effects on the transition temperatures.

Phase Transition Temperature Shift of a Ferromagenetic Gadelonium Film due to the Finite-Size Effects (Finite-Size Errect에 의한 강바성 Gd박막의 상전이온도 이동)

  • Rhee, Il-Su;Lee, Eui-Wan;Lee, Sang-Yun
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.3-6
    • /
    • 1993
  • Abstract We report the result of measurement for the ferro-to paramagnetic phase transition temperature shift of a gadolinium film. The phase transition temperature has been determined by measuring the resistance changes of film as function of temperature. At the ferro-to paramagnetic transition temperature, we can observe the inflection point of resistance changes. The phase transition temperature of 6600$\AA$ gadolinium film is found to be shifted by 4 $\pm$ 0.$3^{\circ}C$ below the transition temperature of bulk gadolinium. This is the first measurement for the phase transition temperature shift of ferromagnetic gadolinium film. This and further results might give a milestone in resolving the differences between experiments and finite-size scaling theory.

  • PDF

Change of Glass Transition Temperature of PETG Containing Gas (가스를 포함하는 고분자 재료(PETG)의 유리전이온도 변화)

  • Cha, Seong-Un;Yun, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.824-829
    • /
    • 2000
  • The industries use polymer materials for many purposes because they have many merits. But these materials' costs take up too much proportion in overall cost of products that use these materials as their major material. So it is very economical for polymer industries to reduce these costs. Microcellular foaming process appeared in 1980's to solve this problem and it proved to be quite successful. This process uses inert gases such as CO2, N2. As these gases are dissolved into polymer matrices. many properties are changed. Glass transition temperature is one of these properties. DSC, DMA are devices that measures this temperature, but these are not sufficient to measure the temperature of polymer containing gas. In this paper, we devised a new tester that uses magnetism. We used this device to acquire data of the change of glass transition temperature and made Cha-Yoon model that can predict the change of glass transition temperature. Using this model, the change of this temperature can be estimated as a function of weight gain of gas. Cha-Yoon model proved that Chow's model is inappropriate to predict the change of glass transition temperature of polymer matrices containing gas.

The Effect of DSC Analysis Condition on the Glass Transition Temperature of curred Epoxy This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition. (에폭시 경화물 DSC에 의한 유리전이 온도 측정의 분석조건 의존성)

  • 오무원;권혁삼
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.30-33
    • /
    • 1994
  • This paper studies on the effect of DSC(Differential Scanning Calorimeter) analysis condition on the glass transition temperature of silica filled epoxy network polymer used for ultra-high voltage apparatus. The effects of temperature scanning rate specimen size and gas flow rate on measured glass transition temperature have been studied in order to select optimum thermal analysis condition.

  • PDF

Study for Local Glass Transition of Bulk Metallic Glasses using Atomic Strain (원자변형률을 이용한 비정질 금속의 천이온도에 관한 연구)

  • Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.104-109
    • /
    • 2011
  • Bulk metallic glasses (BMG) have been greatly improved by the advance of synthesis process during last three decades. It was also found that the Glass Forming Ability (GFA) strongly depends on the glass transition temperature. When the temperature approaches to a critical value, the crystals nucleation from the supercooled liquid can be suppressed so that bulk glass formation possible. Egami and others found that the local glass transition temperature depends on the volumetric strain of each atom and suggested the critical transition temperature. In this paper, we explore the strain dependency of local glass transition temperature using the atomic strain defined by the deformation tensor for the Voronoi polyhedra.

Development of Compensation-Type Fire Detector Using Metal-Insulator-Transition Critical-Temperature Sensor (금속-절연체 전이 임계온도센서를 이용한 보상식 화재 감지기 개발)

  • Jung, Sun-Kyu;Kim, Hyun-Tak
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.26-30
    • /
    • 2014
  • A Compensation-type fire detector (CFD) is operated with two functions of a differential-temperature detector and as a fixed-temperature detector. The differential-temperature detector observes a rate of temperature increase, and the fixed-temperature detector measures a given fixed temperature. The differential-temperature detector does not observe the outbreak of fire in slowly increasing temperature conditions, whereas the fixed-temperature detector is not able to observe the outbreak of fire in conditions under predetermined temperature level. We developed a CFD to compensate for weaknesses of both detectors. To compensate for the disadvantages, a sensor of the sensor metal-insulator-transition critical-temperature sensor was used. Temperature coefficient of resistance is the sensitivity for sensor. At $55^{\circ}C$, temperature coefficient of resistance of metal-insulator-transition critical-temperature sensor was 14.15%. Temperature coefficient of resistance of thermistor was about 0.5%. This CFD was operated as two ways that fixed-temperature detector and differential-temperature detector in one sensor.

Transition temperature shiftin barium titanate with $SnO_{2}$ (Stonnic Dioxide첨가에 따른 Barium Titanate의 전이온도의 이동)

  • 박창엽;박상만
    • 전기의세계
    • /
    • v.26 no.1
    • /
    • pp.82-86
    • /
    • 1977
  • Semiconducting Barium Titanate shows resistivity anomaly near the transition temperature 120.deg. C. Its transition temperature decreases about 6-7.deg. C per 1 mole % SnO$_{2}$, which is likely to compose (BaSb) (TiSn) $O_{3}$ structure by making Sn$^{+4}$ ions occupy Ti$^{+4}$ ion sites. Grain boundories, whose existance is the cause of having high resistivity in Semiconducting BaTiO$_{3}$ disappear due to the spontaneous polarization below the transition temperature, and it is believed that the phase transition makes semiconducting BaTiO$_{3}$ have resistivity anomaly at certain temperature. Temperature and frequency dependencies of resistivity are also investigated for practical application.ion.

  • PDF

The Effect of Salt and pH on the Phase Transition Behaviors of pH and Temperature-Responsive Poly(N,N-diethylacrylamide-co-methylacrylic acid)

  • Liu, Tonghuan;Fang, Jian;Zhang, Yaping;Zeng, Zhengzhi
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.670-675
    • /
    • 2008
  • A series of pH and temperature-responsive (N,N-diethylacrylamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis, Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) $^1H$, $^{13}C$ and LLS. The effects of salt and pH on the phase transition behaviors of the copolymers were investigated by uv. With increasing NaCl concentration, significant salt effects on their phase transition behaviors were observed. UV spectroscopic studies showed that the phase transition became faster with increasing NaCl concentration. In addition, the phase transition behaviors of copolymers were sensitive to pH. The pH and temperature sensitivity of these copolymers would make an interesting drug delivery system.

Evaluation of the Ductile-Brittle Transition Behavior of fracture Toughness by Material Degradation (열화에 따른 파괴인성치의 연성-취성 천이거동 평가)

  • 석창성;김형익;김상필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.140-147
    • /
    • 2003
  • As the huge energy transfer systems like as nuclear power plant and steam power plant are operated for a long time at a high temperature, mechanical properties are changed and ductile-brittle transition temperature is raised by degradation. So it is required to estimate degradation in order to assess the safety, remaining life and further operation parameters. The sub-sized specimen test method using surveillance specimen was developed for evaluating the integrity of metallic components. In this study, we would like to present the evaluation technique of the ductile-brittle transition temperature by the sub-sized specimen test. The four classes of the thermally aged 1Cr-1Mo-0.25V specimens were prepared using an artificially accelerated aging method. The tensile test and fracture toughness test were performed. The results of the fracture toughness tests using the sub-sized specimens were compared with the evaluation technique of the ductile-brittle transition temperature.

Investigation on the phase transition of $Ni_2$MnGa alloy by using impedance spectroscopy

  • Park, S.Y.;Cho, K.H.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.13-17
    • /
    • 2003
  • The influence of structural transition on the resistance and impedance behavior of Ni$_2$MnGa alloy was investigated. The temperature-dependent resistance and impedance were measured in a temperature range of 4 - 350 K and 185 - 300 K, respectively. The dependence of temperature coefficient of resistivity on temperature shows a kink at 220 K, which is related to the structural transition. The change in dominant scattering mechanism results in the observed kink. Significant increases were also observed around the transition temperature for both real and imaginary parts of impedance. It is thought that this phenomenon originates from disappearance of the martensite twin boundaries during the structural transformation.

  • PDF