DOI QR코드

DOI QR Code

A Theoretical Study on the Low Transition Temperature of VO2 Metamaterials in the THz Regime

  • Received : 2022.07.11
  • Accepted : 2022.11.02
  • Published : 2022.12.25

Abstract

Vanadium dioxide (VO2) is a well-known material that undergoes insulator-to-metal phase transition near room temperature. Since the conductivity of VO2 changes several orders of magnitude in the terahertz (THz) spectral range during the phase transition, VO2-based active metamaterials have been extensively studied. Experimentally, it is reported that the metal nanostructures on the VO2 thin film lowers the critical temperature significantly compared to the bare film. Here, we theoretically studied such early transition phenomena by developing an analytical model. Unlike experimental work that only measures transmission, we calculate the reflection and absorption and demonstrate that the role of absorption is quite different for bare and patterned samples; the absorption gradually increases for bare film during the phase transition, while an absorption peak is observed at the critical temperature for the metamaterials. In addition, we also discuss the gap width and VO2 thickness effects on the transition temperatures.

Keywords

Acknowledgement

The present research was supported by the research fund of Dankook University in 2020.

References

  1. F. J. Morin, "Oxides which show a metal-to-insulator transition at the neel temperature," Phys. Rev. Lett. 3, 34-36 (1959). https://doi.org/10.1103/PhysRevLett.3.34
  2. A. Cavalleri, Cs. Toth, C. W. Siders, J. A. Squier, F. Raksi, P. Forget, and J. C. Kieffer, "Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition," Phys. Rev. Lett. 87, 237401 (2001). https://doi.org/10.1103/PhysRevLett.87.237401
  3. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007). https://doi.org/10.1126/science.1150124
  4. S. Wall, S. Yang, L. Vidas, M. Chollet, J. M. Glownia, M. Kozina, T. Katayama, T. Henighan, M. Jiang, T. A. Miller, D. A. Reis, l. A. Boatner, O. Delaire, and M. Trigo, "Ultrafast disordering of vanadium dimers in photoexcited VO2," Science 362, 572-576 (2018). https://doi.org/10.1126/science.aau3873
  5. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, J. N. Marie, S. Palit, D. R. Smith, D.V. M, and D. N. Basov, "Memory Metamaterials," Science 325, 1518-1521 (2009). https://doi.org/10.1126/science.1176580
  6. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, and Y. Long, "Thermochromic VO2 for energy-efficient smart windows," Joule 2,1707-1746 (2018). https://doi.org/10.1016/j.joule.2018.06.018
  7. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, "Active terahertz nanoantennas based on VO2 phase transition," Nano Lett. 10, 2064-2068 (2010). https://doi.org/10.1021/nl1002153
  8. S. B. Choi, J. S. Kyoung, H. S. Kim, H. R. Park, D. J. Park, B.-J. Kim, Y. H. Ahn, F. Rotermund, H.-T. Kim, K. J. Ahn, and D. S. Kim, "Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film," Appl. Phys. Lett. 98, 071105 (2011). https://doi.org/10.1063/1.3553504
  9. J. Kyoung, M. Seo, H. Park, S. Koo, H. Kim, Y. Park, B.-J. Kim, K. Ahn, N. Park, H.-T. Kim, and D.-S. Kim, "Giant nonlinear response of terahertz nanoresonators on VO2 thin film," Opt Express 18, 16452-16459 (2010). https://doi.org/10.1364/OE.18.016452
  10. Y.-G. Jeong, H. Bernien, J.-S. Kyoung, H.-R. Park, H.-S. Kim, J.-W. Choi, B.-J. Kim, H.-T. Kim, K. J. Ahn, and D.-S. Kim, "Electrical control of terahertz nano antennas on VO2 thin film," Opt. Express 19, 21211-21215 (2011). https://doi.org/10.1364/OE.19.021211
  11. Y. Kalcheim, A. Camjayi, J. del Valle, P. Salev, M. Rozenberg, and I. K. Schuller, "Non-thermal resistive switching in Mott insulator nanowires," Nat. Commun. 11, 2985 (2020). https://doi.org/10.1038/s41467-020-16752-1
  12. Y. Kim, P. C. Wu, R. Sokhoyan, K. Mauser, R. Glaudell, G. K. Shirmanesh, and H. A. Atwater, "Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces," Nano Lett. 19, 3961-3968 (2019). https://doi.org/10.1021/acs.nanolett.9b01246
  13. B. Hu, Y. Zhang, W. Chen, C. Xu, and Z. L. Wang, "Self-heating and external strain coupling induced phase transition of VO2 nanobeam as single domain switch," Adv. Mater. 23, 3536-3541 (2011). https://doi.org/10.1002/adma.201101731
  14. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, "Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide," Phys. Rev. Lett. 99, 226401 (2007). https://doi.org/10.1103/PhysRevLett.99.226401
  15. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Effective sensing volume of terahertz metamaterial with various gap widths," J. Opt. Soc. Korea 20, 628-632 (2016). https://doi.org/10.3807/JOSK.2016.20.5.628
  16. S. J. Park and Y. H. Ahn, "Accurate measurement of THz dielectric constant using metamaterials on a quartz substrate," Curr. Opt. Photonics 1, 367-341 (2017). https://doi.org/10.3807/COPP.2017.1.6.637
  17. Z. Cui, D. Zhu, L. Yue, H. Hu, S. Chen, X. Wang, and Y. Wang, "Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles," Opt. Express 27, 22190-22197 (2019). https://doi.org/10.1364/oe.27.022190
  18. J. Huang, J. Li, Y. Yang, J. Li, J. Li, Y. Zhang, and J. Yao, "Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide," Opt. Express 28, 7018-7027 (2020). https://doi.org/10.1364/oe.387156
  19. M. Liu, E. Plum, H. Li, S. Li, Q. Xu, X. Zhang, C. Zhang, C. Zou, B. Jin, J. Han, and W. Zhang, "Temperature-controlled optical activity and negative refractive index," Adv. Func. Mater. 31, 2010249 (2021). https://doi.org/10.1002/adfm.202010249
  20. Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, "Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures," ACS Photonics 5, 3040-3050 (2018). https://doi.org/10.1021/acsphotonics.8b00276
  21. Y.-G. Jeong, S. Han, J. Rhie, J.-S. Kyoung, J.-W. Choi, N. Park, S. Hong, B.-J. Kim, H.-T. Kim, and D.-S. Kim, "A vanadium dioxide metamaterial disengaged from insulator-to-metal transition," Nano Lett. 15, 6318-6323 (2015). https://doi.org/10.1021/acs.nanolett.5b02361
  22. J. Kyoung, "Anomalous blueshift of aperture resonance enabled by the loss of a thin film," Sci. Rep. 10, 22100 (2020). https://doi.org/10.1038/s41598-020-79224-y
  23. S. B. Choi, C. C. Byeon, and D. J. Park, "Theoretical study of the strong field emission of electrons inside a nanogap due to an enhanced terahertz field," Curr. Opt. Photonics 2, 508-513 (2018). https://doi.org/10.3807/COPP.2018.2.6.508
  24. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Phys. Rev. B 76, 125408 (2007). https://doi.org/10.1103/physrevb.76.125408
  25. S. W. Jun and Y. H. Ahn, "Resonance characteristics of THz metamaterials based on a Drude metal with finite permittivity," Curr. Opt. Photonics 2, 378-382 (2018). https://doi.org/10.3807/COPP.2018.2.4.378
  26. J.-H. Choe, J.-H. Kang, D.-S. Kim, and Q.-H. Park, "Slot antenna as a bound charge oscillator," Opt. Express 20, 6521-6526 (2012). https://doi.org/10.1364/OE.20.006521
  27. S. Wang, L. Kang, and D. H. Werner, "Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2)," Sci. Rep. 7, 4326 (2017). https://doi.org/10.1038/s41598-017-04692-8
  28. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3, 152-156 (2009). https://doi.org/10.1038/nphoton.2009.22
  29. K. J. Ahn, Y.-M. Bahk, D.-S. Kim, J. Kyoung, and F. Rotermund, "Ultrasensitive molecular absorption detection using metal slot antenna arrays," Opt. Express 23, 19047 (2015). https://doi.org/10.1364/OE.23.019047
  30. J. Kyoung and Y. G. Roh, "Extraordinary optical transmission induced by strong plasmon-phonon coupling: Shape resonance versus non-shape resonance," J. Appl. Phys. 120, 193104 (2016). https://doi.org/10.1063/1.4968171
  31. M. Zhang and Z. Song, "Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration," Opt. Express 28, 11780-11788 (2020). https://doi.org/10.1364/oe.391891
  32. A. Tripathi, J. John, S. Kruk, Z. Zhang, H. S. Nguyen, L. Berguiga, P. R. Romeo, R. Orobtchouk, S. Ramanathan, Y. Kivshar, and S. Cueff, "Tunable mie-resonant dielectric metasurfaces based on VO2 phase-transition materials," ACS Photonics 8, 1206-1213 (2021). https://doi.org/10.1021/acsphotonics.1c00124
  33. H. Zhu, J. Li, L. Du, L. Shan, P. Li, X. Lu, T. Feng, S. Das, W. Huang, Q. Shi, and L. Zhu, "VO2-metallic hybrid metasurfaces for agile terahertz wave modulation by phase transition," APL Mater. 10, 031112 (2022). https://doi.org/10.1063/5.0081244
  34. H. Liu, Z.-H. Wang, L. Li, Y.-X. Fan, and Z.-Y. Tao, "Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber," Sci. Rep. 9, 5751 (2019). https://doi.org/10.1038/s41598-019-42293-9