DOI QR코드

DOI QR Code

Incident-angle-based Selective Tunability of Resonance Frequency in Terahertz Planar Metamolecules

  • Lim, A Young (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Lee, Joong Wook (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University)
  • 투고 : 2022.08.10
  • 심사 : 2022.11.04
  • 발행 : 2022.12.25

초록

We carry out numerical simulations of the responses of planar metamaterials composed of metamolecules under obliquely incident terahertz waves. A Fano-like-resonant planar metamaterial, with two types of resonance modes originating from the two meta-atoms constituting the meta-molecules, exhibits high performance in terms of resonance strength, as well as the outstanding ability to manipulate the resonance frequency by varying the incident angle of the terahertz waves. In the structure, the fundamental electric dipole resonance associated with Y-shaped meta-atoms is highly tunable, whereas the inductive-capacitive resonance of C-shaped meta-atoms is relatively omnidirectional. This is attributed to the electric near-field coupling between the two types of meta-atoms. Our work provides novel opportunities for realizing terahertz devices with versatile functions, and for improving the versatility of terahertz sensing and imaging systems.

키워드

과제정보

The authors thank the funding agencies for supporting our research work. In addition, the authors would like to thank the Editor in Chief, the Associate Editor, and the anonymous referees for their insightful suggestions.

참고문헌

  1. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). https://doi.org/10.1126/science.1058847
  2. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). https://doi.org/10.1126/science.1125907
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). https://doi.org/10.1126/science.1108759
  5. M. Silveirinha and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bens using ε-near-zero materials," Phys. Rev. Lett. 97, 157403 (2006). https://doi.org/10.1103/PhysRevLett.97.157403
  6. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz electromagnetic wave transmission through single rectangular holes and slits in thin metallic sheets," Phys. Rev. Lett. 99, 137401 (2007). https://doi.org/10.1103/PhysRevLett.99.137401
  7. I.-S. Lee, I.-B. Sohn, C. Kang, C.-S. Kee, J.-K. Yang, and J. W. Lee, "High refractive index metamaterials using corrugated metallic slots," Opt. Express 25, 6365-6371 (2017). https://doi.org/10.1364/OE.25.006365
  8. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q.-H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253-1259 (2006). https://doi.org/10.1364/OE.14.001253
  9. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett. 102, 023901 (2009). https://doi.org/10.1103/PhysRevLett.102.023901
  10. A. D. Boardman, V. V. Grimalsky, Y. S. Kivshar, S. W. Koshevaya, M. Lapine, N. M. Litchinitser, V. N. Malnev, M. Noginov, Y. G. Rapoport, and V. M. Shalaev, "Active and tunable metamaterials," Laser Photonics Rev. 5, 287-307 (2011). https://doi.org/10.1002/lpor.201000012
  11. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nat. Mater. 8, 758-762 (2009). https://doi.org/10.1038/nmat2495
  12. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A. P. Alivisatos, and N. Liu, "Transition from isolated to collective modes in plasmonic oligomers," Nano Lett. 10, 2721-2726 (2010). https://doi.org/10.1021/nl101938p
  13. Z.-J. Yang, Q.-Q. Wang, and H.-Q. Lin, "Cooperative effects of two optical dipole antennas coupled to plasmonic Fabry-Perot cavity," Nanoscale 4, 5308-5311 (2012). https://doi.org/10.1039/c2nr31513k
  14. F. Shafiel, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alu, and X. Li, "A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance," Nat. Nanotechnol. 8, 95-99 (2013). https://doi.org/10.1038/nnano.2012.249
  15. N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules," Adv. Mater. 20, 4521-4525 (2008). https://doi.org/10.1002/adma.200801917
  16. J.-Q. Liu and J.-M. Yu, "Electromagnetic resonances and their tunability in planar metamolecules isomer," Optik 126, 2858-2861 (2015). https://doi.org/10.1016/j.ijleo.2015.07.033
  17. Y. U. Lee, E. Y. Choi, E. S. Kim, J. H. Woo, B. Kang, J. Kim, B. C. Park, T. Y. Hong, J. H. Kim, and J. W. Wu, "Double Fano resonances in a composite metamaterial possessing tripod plasmonic resonances," J. Opt. 17, 025103 (2015). https://doi.org/10.1088/2040-8986/17/2/025103
  18. H. K. Yoo, S. B. Cho, S. J. Park, Y. H. Ahn, C. Kang, I. W. Hwang, and J.-W. Lee, "Metal-organic hybrid metamaterials for spectral-band selective active terahertz modulators," Appl. Sci. 11, 2765 (2021). https://doi.org/10.3390/app11062765
  19. N. Born, I. Al-Naib, C. Jansen, R. Singh, J. V. Moloney, M. Scheller, and M. Koch, "Terahertz metamaterials with ultrahigh angular sensitivity," Adv. Opt. Mater. 3, 642-645 (2015). https://doi.org/10.1002/adom.201400469
  20. J.-W. Lee, J. K. Yang, I.-B. Sohn, H. K. Yoo, C. Kang, and C. S. Kee, "Monopole resonators in planar plasmonic metamaterials," Opt. Express 22, 18433-18438 (2014). https://doi.org/10.1364/OE.22.018433
  21. S. B. Jo, M.-G. Bae, and J.-W. Lee, "Controllable Fano-like resonance in terahertz planar meta-rotamers," Appl. Sci. 11, 9796 (2021). https://doi.org/10.3390/app11219796
  22. X. C. Pan, X. X. Xia, and W. Li, "Effects of oblique incidence on terahertz responses of planar split-ring resonators," Chinese Phys. B 23, 057804 (2014). https://doi.org/10.1088/1674-1056/23/5/057804
  23. I. Al-Naib, "Sensing glucose concentration using symmetric metasurfaces under oblique incident terahertz waves," Crystals 11, 1578 (2021). https://doi.org/10.3390/cryst11121578
  24. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, T. Ren, J. Mock, S.-Y. Cho, N. M. Jokerst, and D. R. Smith, "Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy," Appl. Phys. Lett. 90, 092508 (2007). https://doi.org/10.1063/1.2679766
  25. J. S. Hwang, Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, L. Y. Chen, and Y. P. Lee, "Switching and extension of transmission response, based on bending metamaterials," Sci. Rep. 7, 3559 (2017). https://doi.org/10.1038/s41598-017-03824-4
  26. C. Arose, A. C. Terracciano, R. E. Peale, and S. S. Vasu, "Selective terahertz absorber for angle and polarization-independent spectral sensing," Opt. Lett. 47, 1514-1516 (2022). https://doi.org/10.1364/OL.449308
  27. C. Liu, Y. Huang, Z. Yao, L. Yu, Y. Jin, and X. Xu, "Giant angular dependence of electromagnetic induced transparency in THz metamaterials," EPL 121, 44004 (2018). https://doi.org/10.1209/0295-5075/121/44004
  28. B. Zhang, J. Hendrickson, N. Nader, H.-T. Chen, and J. guo, "Metasurface optical antireflection coating," Appl. Phys. Lett. 105, 241113 (2014). https://doi.org/10.1063/1.4904827