• Title/Summary/Keyword: transforming growth factor-beta ($TGF-{\beta}$)

Search Result 359, Processing Time 0.027 seconds

Role of neuropeptide Y in the bone marrow hematopoietic stem cell microenvironment

  • Park, Min Hee;Min, Woo-Kie;Jin, Hee Kyung;Bae, Jae-sung
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.645-646
    • /
    • 2015
  • The sympathetic nervous system (SNS) or neurotransmitters in the bone marrow microenvironment has been known to regulate hematopoietic stem cell (HSC) functions such as self-renewal, proliferation and differentiation. However, the specific role of neuropeptide Y (NPY) in this process remains relatively unexplored. In this study, we demonstrated that NPY deficient mice have significantly reduced HSC numbers and impaired bone marrow regeneration due to apoptotic destruction of SNS fibers and/or endothelial cells. Moreover, NPY treatment prevented bone marrow impairments in a mouse model of chemotherapy-induced SNS injury, while conditional knockout mice lacking the Y1 receptor in macrophages did not restore bone marrow dysfunction in spite of NPY injection. Transforming growth factor-beta (TGF-β) secreted by NPY-mediated Y1 receptor stimulation in macrophages plays a key role in neuroprotection and HSC survival in the bone marrow. Therefore, this study reveals a new role of NPY in bone marrow HSC microenvironment, and provides an insight into the therapeutic application of this neuropeptide.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui;Tian, Yuan;Zhao, Xiangfeng;Jing, Haifeng;Xie, Qi;Li, Peng;Li, Dong;Yan, Dongmei;Zhu, Xun
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.886-894
    • /
    • 2015
  • Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

Wound Healing Effect of Bacterial Synthesized Cellulose on Full Thickness Skin Defect in the Rat (박테리아 유래 셀룰로오스가 백서의 창상치유에 미치는 영향)

  • Park, Sang-Uk;Lee, Byung-Kwon;Kim, Mi-Sun;Park, Kwan-Kyu;Sung, Woo-Jung;Kim, Hyun-Yeon;Kim, Peter Chan-Woo;Shim, Jeong-Su;Lee, Yong-Jig;Kim, Seong-Ho;Kim, In-Ho;Park, Dae-Hwan
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.733-739
    • /
    • 2011
  • Purpose: Cellulose is a natural substance from plants or bacteria. It is known that bacterial synthesized cellulose has an effect of wound healing. The aim of this study is to show the effect of bacterial synthesized cellulose from citrus on wound healing. Methods: Three full-thickness skin defects were made on the back of Sprague-Dawley rats. Three wounds were treated by vaseline gauze (Group V), Algisite $M^{(R)}$ (Group A) and bacterial synthesized cellulose from citrus (Group C) was used for dressing on skin defect on rats. We analyzed the gross, histological and biochemistry finding. Results: Group C showed more decrease of wound size compared to Group V (33% versus 7.2%) after 14 days. The histologic findings revealed Group C and Group A preceed the process of wound healing rather than Group V (More rapid collagen deposition and neovascularization and reduced inflammation). Also, the expressions of vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-${\beta}1$ were increased in the Group C and Group A compared with the Group V in 7 days. VEGF and TGF-${\beta}1$ expression were decreased in the Group C and Group A in 14 days, however Group V was not decreased at 14 day because of delayed wound healing process. Conclusion: Bacterial synthesized cellulose from citrus affects wound healing by reducing the inflammatory stage. And stimulates wound contracture by the deposition of extracellular matrix, thus preventing the formation of chronic wounds.

Molecular Signatures of Sinus Node Dysfunction Induce Structural Remodeling in the Right Atrial Tissue

  • Roh, Seung-Young;Kim, Ji Yeon;Cha, Hyo Kyeong;Lim, Hye Young;Park, Youngran;Lee, Kwang-No;Shim, Jaemin;Choi, Jong-Il;Kim, Young-Hoon;Son, Gi Hoon
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.408-418
    • /
    • 2020
  • The sinus node (SN) is located at the apex of the cardiac conduction system, and SN dysfunction (SND)-characterized by electrical remodeling-is generally attributed to idiopathic fibrosis or ischemic injuries in the SN. SND is associated with increased risk of cardiovascular disorders, including syncope, heart failure, and atrial arrhythmias, particularly atrial fibrillation. One of the histological SND hallmarks is degenerative atrial remodeling that is associated with conduction abnormalities and increased right atrial refractoriness. Although SND is frequently accompanied by increased fibrosis in the right atrium (RA), its molecular basis still remains elusive. Therefore, we investigated whether SND can induce significant molecular changes that account for the structural remodeling of RA. Towards this, we employed a rabbit model of experimental SND, and then compared the genome-wide RNA expression profiles in RA between SND-induced rabbits and sham-operated controls to identify the differentially expressed transcripts. The accompanying gene enrichment analysis revealed extensive pro-fibrotic changes within 7 days after the SN ablation, including activation of transforming growth factor-β (TGF-β) signaling and alterations in the levels of extracellular matrix components and their regulators. Importantly, our findings suggest that periostin, a matricellular factor that regulates the development of cardiac tissue, might play a key role in mediating TGF-β-signaling-induced aberrant atrial remodeling. In conclusion, the present study provides valuable information regarding the molecular signatures underlying SND-induced atrial remodeling, and indicates that periostin can be potentially used in the diagnosis of fibroproliferative cardiac dysfunctions.

Saponins from Panax japonicus ameliorate age-related renal fibrosis by inhibition of inflammation mediated by NF-κB and TGF-β1/Smad signaling and suppression of oxidative stress via activation of Nrf2-ARE signaling

  • Gao, Yan;Yuan, Ding;Gai, Liyue;Wu, Xuelian;Shi, Yue;He, Yumin;Liu, Chaoqi;Zhang, Changcheng;Zhou, Gang;Yuan, Chengfu
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.408-419
    • /
    • 2021
  • Background: The decreased renal function is known to be associated with biological aging, of which the main pathological features are chronic inflammation and renal interstitial fibrosis. In previous studies, we reported that total saponins from Panax japonicus (SPJs) can availably protect acute myocardial ischemia. We proposed that SPJs might have similar protective effects for aging-associated renal interstitial fibrosis. Thus, in the present study, we evaluated the overall effect of SPJs on renal fibrosis. Methods: Sprague-Dawley (SD) aging rats were given SPJs by gavage beginning from 18 months old, at 10 mg/kg/d and 60 mg/kg/d, up to 24 months old. After the experiment, changes in morphology, function and fibrosis of their kidneys were detected. The levels of serum uric acid (UA), β2-microglobulin (β2-MG) and cystatin C (Cys C) were assayed with ELISA kits. The levels of extracellular matrix (ECM), matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), inflammatory factors and changes of oxidative stress parameters were examined. Results: After SPJs treatment, SD rats showed significantly histopathological changes in kidneys accompanied by decreased renal fibrosis and increased renal function; As compared with those in 3-month group, the levels of serum UA, Cys C and β2-MG in 24-month group were significantly increased (p < 0.05). Compared with those in the 24-month group, the levels of serum UA, Cys C and β2-MG in the SPJ-H group were significantly decreased. While ECM was reduced and the levels of MMP-2 and MMP-9 were increased, the levels of TIMP-1, TIMP-2 and transforming growth factor-β1 (TGF-β1)/Smad signaling were decreased; the expression level of phosphorylated nuclear factor kappa-B (NF-κB) was down-regulated with reduced inflammatory factors; meanwhile, the expression of nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) signaling was aggrandized. Conclusion: These results suggest that SPJs treatment can improve age-associated renal fibrosis by inhibiting TGF-β1/Smad, NFκB signaling pathways and activating Nrf2-ARE signaling pathways and that SPJs can be a potentially valuable anti-renal fibrosis drug.

Effects of compound traditional Astragalus and Salvia Miltiorrhiza extract on acute and chronic hepatic injury

  • Zhang, Xiaoxiang;Yang, Yan;Liu, Xin;Wu, Chao;Chen, Minzhu
    • CELLMED
    • /
    • v.3 no.2
    • /
    • pp.15.1-15.5
    • /
    • 2013
  • Previous reports showed that Compound Astragalus and Salvia miltiorrhiza extract (CASE), which was mainly composed of astragalosides, astragalus polysaccharide and salvianolic acids, inhibited hepatic fibrosis by mediating transforming growth factor-${\beta}$ (TGF-${\beta}$)/Smad signaling. Our aim was to examine the effects of CASE on D-galactosamine (D-GalN) treated liver injury in mice and carbon tetrachloride ($CCl_4$)-induced liver fibrosis in rats. CASE was administered to mice with D-GalN-induced liver injury and to rats with $CCl_4$-induced liver fibrosis, respectively. Liver injury was routinely evaluated by relative liver weight, serum levels of ALT, AST, hyaluronic acid (HA), hepatic malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, hydroxyproline (HYP) and histopathologic changes. Treatment of mice with CASE (60, 120, and 240 mg/kg, ig) significantly lowered ALT, relative liver weight, and MDA levels when compared with D-GalN treated mice. CASE (120, 240 mg/kg) significantly lowered ALT, AST, HA, HYP, and MDA levels against $CCl_4$ treated rats. Decreased SOD level was reversed with CASE treatment. Upon histopathological examination, CASE treatment had significantly inhibitory effect on the progression of hepatic fibrosis in rats. These results indicate that CASE might be effective in treatment and prevention of acute and chronic hepatic injury due to its antioxidant activity.

IMMUNOHISTOCHEMICAL STUDY FOR THE EXPRESSION OF BMP-2/4 ON THE HEALING PROCESS IN THE MANDIBULAR BONE DEFECT OF RAT (백서의 하악골 결손부 치유시 골형성단백질 2/4의 발현에 관한 연구)

  • Choi, Jae-Yong;Lee, Sang-Chull
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.26 no.4
    • /
    • pp.325-336
    • /
    • 2000
  • Bone morphogenetic protein-2/4 are members of Transforming Growth Factor-$\beta$(TGF-$\beta$) superfamily and they may induce formation of cartilage and bone in vivo. This study was performed to investigate the cellular target and period of action of BMP-2/4 and understanding of actions of BMP-2/4 at cellular level. The appearance of BMP-2/4 during healing of mandibular and periodontal defect in rat was evaluated immunohistochemically. 40 Sprague-Dawley strain white male rats, each weighing about 300gm were used. Bony defect was performed in the mandible and they were sacrificed at the day of 3rd, 10th, 20th, 30th after operation. The specimens were harvested and examined histologically and immunohistochemically by localization of anti-BMP-2/4. The results were as follows: 1. Woven bone was observed at 10th day and perfect healing of defect with compact bone and periodontal ligment space at 30th day. 2. Osteoprogenitor cells, osteoblastic cells and periosteum were positive reaction to immunohistochemical stain at 10th day. 3. Cells of bone marrow space and surface cells of osteocytes and cementoblasts were positive reaction to immunohistochemical stain at 20th day. 4. Newly formed osteocytes and cementocytes were positive reaction to immunohistochemical stain at 30th day. From the above findings, we could conclude that BMP-2/4 acted significant roles as factors of induction, proliferation and differentiation during bone healing process.

  • PDF

Association of a Single Codon Deletion in Bone Morphogenetic Protein 15 Gene with Prolificacy in Small Tail Han Sheep

  • Guo, W.;Chu, M.X.;Deng, X.M.;Feng, J.D.;Li, Ning;Wu, Changxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1491-1495
    • /
    • 2004
  • Small Tail Han Sheep has significant characteristics of high prolificacy and non-seasonal ovulatory activity and is an excellent local sheep breed in P. R. China. Recently a novel member of the transforming growth factor $\beta$ (TGF$\beta$) superfamily termed bone morphogenetic protein 15 (BMP15) was shown to be specifically expressed in oocytes and to be essential for female fertility. Therefore, BMP15 is a candidate gene for reproductive performance of Small Tail Han Sheep. The whole genomic nucleotide sequence of BMP15 gene in Small Tail Han Sheep was searched for polymorphisms by PCR-SSCP and direct sequencing, and only one polymorphism was found. The polymorphism was a result of a 3 base pair deletion, which eliminated a single Leu codon (CTT). The allelic frequencies for A (without deletion) and B (with a codon deletion) are 0.73 and 0.27 respectively. The effects of BMP15 genotype on litter size were evaluated using the least squares model. This indicated that there was a significant association between litter size of Small Tail Han Sheep and a deletion in BMP15 gene (p=0.02<0.05). Small Tail Han Sheep ewes with AA and AB genotype produce on average 0.5 and 0.3 more lambs per litter than those ewes with BB genotype.

Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2

  • Kim, Myung-Jin;Park, Seon Young;Chang, Hae Ryung;Jung, Eun Young;Munkhjargal, Anudari;Lim, Jong-Seok;Lee, Myeong-Sok;Kim, Yonghwan
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.308-317
    • /
    • 2017
  • Bone morphogenetic protein type 2 receptor (BMPR2) is one of the transforming growth $factor-{\beta}$ ($TGF-{\beta}$) superfamily receptors, performing diverse roles during embryonic development, vasculogenesis, and osteogenesis. Human BMPR2 consists of 1,038 amino acids, and contains functionally conserved extracellular, transmembrane, kinase, and C-terminal cytoplasmic domains. Bone morphogenetic proteins (BMPs) engage the tetrameric complex, composed of BMPR2 and its corresponding type 1 receptors, which initiates SMAD proteins-mediated signal transduction leading to the expression of target genes implicated in the development or differentiation of the embryo, organs and bones. In particular, genetic alterations of BMPR2 gene are associated with several clinical disorders, including representative pulmonary arterial hypertension, cancers, and metabolic diseases, thus demonstrating the physiological importance of BMPR2. In this mini review, we summarize recent findings regarding the molecular basis of BMPR2 functions in BMP signaling, and the versatile roles of BMPR2. In addition, various aspects of experimentally validated pathogenic mutations of BMPR2 and the linked human diseases will also be discussed, which are important in clinical settings for diagnostics and treatment.