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Bone morphogenetic protein type 2 receptor (BMPR2) is one 
of the transforming growth factor- (TGF-) superfamily 
receptors, performing diverse roles during embryonic develop-
ment, vasculogenesis, and osteogenesis. Human BMPR2 
consists of 1,038 amino acids, and contains functionally 
conserved extracellular, transmembrane, kinase, and C-terminal 
cytoplasmic domains. Bone morphogenetic proteins (BMPs) 
engage the tetrameric complex, composed of BMPR2 and its 
corresponding type 1 receptors, which initiates SMAD 
proteins-mediated signal transduction leading to the expres-
sion of target genes implicated in the development or 
differentiation of the embryo, organs and bones. In particular, 
genetic alterations of BMPR2 gene are associated with several 
clinical disorders, including representative pulmonary arterial 
hypertension, cancers, and metabolic diseases, thus demon-
strating the physiological importance of BMPR2. In this mini 
review, we summarize recent findings regarding the molecular 
basis of BMPR2 functions in BMP signaling, and the versatile 
roles of BMPR2. In addition, various aspects of experimentally 
validated pathogenic mutations of BMPR2 and the linked 
human diseases will also be discussed, which are important in 
clinical settings for diagnostics and treatment. [BMB Reports 
2017; 50(6): 308-317]

INTRODUCTION

Bone morphogenetic protein type 2 receptor (BMPR2) is one 
of the transforming growth factor- (TGF-) superfamily 
receptors, which is widely expressed in various tissues and 
organs, including pulmonary vascular endothelium, pul-
monary vascular smooth muscle, cerebellum, hippocampus, 

thyroid gland, adrenal gland, heart, liver, pancreas and kidney 
(1-8). Previous reports state that BMPR2 serves as a type 2 
receptor for bone morphogenetic protein (BMP) ligands in 
mammals, and the engagement of specific BMPs to the BMPR2 
and corresponding type 1 receptors plays important roles in 
osteogenesis, cell growth, cell differentiation, and embryonic 
development. Knockout of BMPR2 gene is fatal for embryonic 
development, and conditional BMPR2 knockout mice in 
uterine decidua revealed that BMPR2 is essential for 
post-implantation and fertility (9). To date, at least 20 BMPs, 
seven type 1 receptors (ALK1-7), and four type 2 receptors 
(BMPR2, ACVR1, ACVR1b, and TGFR1) have been identified 
in mammals (10, 11). Among the 20 BMPs, BMP2, 4, 6, and 7 
have been reported to engage BMPR2 and its associated type 1 
receptors, and the ligand-receptor combination is likely to 
determine the physiological roles of BMPR2 (12). Since the 
extracellular signal triggered by BMPs is transmitted into the 
cytoplasm by formation of heteromeric receptor complex, the 
disruption of BMP receptors by genetic alterations results in 
various phenotypic abnormalities. Indeed, causative mutations 
in the BMPR2 gene have been reported in patients present 
with pulmonary arterial hypertension (PAH), chronic obstruc-
tive pulmonary disease (COPD), hereditary hemorrhagic 
telangiectasia (HHT), prostatic neoplasms, colorectal cancer, 
and obesity (12-16). In particular, BMPR2 variants in PAH 
patients have been extensively identified, and pathogenicity of 
some BMPR2 mutations has been validated by in vitro 
functional assays. However, growing evidences have shown 
that the mutations in BMPR2 gene are also implicated in other 
diseases, which might be due to the loss of BMPR2 functions 
in specific combination with the ligands, and its type 1 
binding partners. In this review, we summarize functional 
roles of BMPR2 in diverse molecular pathways. In addition, 
we discuss the identified BMPR2 variants and the resultant 
physiological disorders with experimentally validated cases. 

FACTORS INVOLVED IN THE BMPR2-MEDIATED 
SIGNALING CASCADE

BMPs
In mammals, BMPs are part of the TGF- superfamily which is 
composed of 33 proteins, comprising of TGF-s, activins, 

Invited Mini Review

BMB Rep. 2017; 50(6): 308-317
www.bmbreports.org



Clinical significance linked to mutation in BMPR2 gene
Myung-Jin Kim, et al.

309http://bmbreports.org BMB Reports

inhibins, nodal, lefty, Growth and differentiation factors 
(GDFs), anti-müllerian hormone (AMH), and BMPs (17). BMPs 
were initially discovered as factors that induce the ectopic 
formation of cartilage and bone in rats (18). It was later 
determined that BMPs in mammals have multiple roles in 
skeletal development, bone homeostasis, and tissue regenera-
tion by triggering signal transduction via a complex composed 
of distinct transmembrane serine/threonine kinase receptors, 
BMPR1 and BMPR2. In addition, BMPs possess potent 
osteogenic activities, enabling the in vivo generation of 
ectopic bone formation (19). To date, at least 20 BMPs have 
been identified in mammals. Among them, BMP2, 4, 6, 7, and 
9 are associated with high osteogenic activity (20). BMP2 is 
especially an indispensable factor for osteogenesis, and is 
being studied actively in human clinical uses for bone 
regeneration, and therapeutic trials of pathogenesis related to 
bone (21, 22). BMP2 also acts as a major factor in endo-
chondral bone development, and induces expression of 
osteoblastic differentiation markers including alkaline pho-
sphatase (ALP), osteocalcin, and RUNX2 (23). Similarly, BMP4 
and BMP7 are responsible for the formation and repair of 
endochondral bone (24). BMP5 is required for initiation of 
normal skeletal development, and BMP9, together with 
vascular endothelial growth factor A (VEGFA), effectively 
stimulates ectopic bone formation (25, 26). In contrast, BMP3 
knockout mice studies showed that BMP3 plays a role as a 
negative controller of bone development (27). 

BMPs also play crucial roles in the establishment of basic 
embryonic body plans, which includes the initial vertebrate 
gastrulation, mesoderm, somite, neural patterning, development 
of limb and skeleton, and organogenesis (28, 29). It was 
reported that BMP2-deficient embryos exhibit defects in the 
development of heart, the first organ to be formed during 
embryogenesis. Further studies showed that the heart defect is 
due to the lack of interaction between ectodermal and 
mesodermal cells during development, demonstrating essential 
roles of BMP2 in organ development (30). Similar studies 
found that BMP4 exerts the formation of mesoderm during 
early gastrulation, and BMP7 functions in the organogenesis of 
heart, kidney, and eye (31-33). 

The significant roles of BMPs in vascular development have 
been emphasized over the years, which have been verified in 
vascular disorders including HHT and PAH. For example, 
BMP9 and BMP10, as core cardiac-derived factors, are highly 
expressed in the heart. Experiments have shown that BMP9 
and BMP10 modulate the pulmonary vascular function by 
engaging BMP receptor complex composed of ALK1 (ACVRL1), 
BMPR2, and Endoglin (ENG) to activate SMAD1/5/8-mediated 
signal transduction. Genetic alterations of genes encoding the 
complex, leading to attenuation of BMP9/10 signaling and 
thus inducing unbalanced angiogenetic responses, have been 
identified in patients present with HHT or PAH (34). In 
particular, BMPR2 variants in PAH patients have been 
extensively identified in the past decade, which will be 

discussed below. 

BMP receptors
BMPs initiate SMAD protein-mediated signaling by binding to 
a hetero-dimeric receptor complex. There are three BMP type 
1 receptors, ACVR1 (also known as activin receptor-like kinase 
2, ALK2), BMPR1a (ALK3), and BMPR1b (ALK6), and three 
BMP type 2 receptors, BMPR2, ACVR2a (ActR2a), and 
ACVR2b (ActR2b). Both type 1 and type 2 BMP receptors 
share common membrane receptor structures, such as a short 
extracellular ligand binding domain, a single membrane- 
spanning domain, and an intracellular serine/threonine kinase 
domain. The type 1 receptors carry two additional motifs, a 
glycine/serine-rich region preceding the kinase domain (GS- 
box) and a short region of eight amino acids (denoted as L45 
loop) within its kinase domain (35, 36). An unusual property 
of type 1 receptors comes from a highly conserved GS motif 
which regulates the kinase activity of the receptor (37). The 
three type 1 receptors have redundant roles in skeletal 
development. BMPR1a and BMPR1b are structurally similar to 
each other, and have functionally akin features in chondrocyte 
condensations and developing skeletons. However, ACVR1 
possesses a unique function to induce ectopic osteoblasto-
genesis through the activation of SMAD1/5 signaling (38, 39). 

Type 2 BMP receptors are expressed in diverse tissues. 
Although all type 2 receptors have similar structures, BMPR2 
has a unique 508-amino acid long C-terminal tail following the 
kinase domain. Long and short forms of BMPR2 have been 
isolated, where the short isoform is the splice variant lacking 
exon 12, coding most of the C-terminal tail. Similar to the long 
BMPR2 variant, the short form of BMPR2 is broadly expressed 
(12). Recently, it was reported that a single di-leucine motif 
located in the long C-terminal BMPR2 facilitates faster 
clathrin-mediated endocytosis than the short form. Further 
studies showed that enhanced expression of the short BMPR2 
at plasma membrane led to increased activation of SMAD 
protein-mediated signaling, suggesting that the C-terminal 
region may be modulating the activity of BMPR2 (40). The 
physiological importance of the C-terminal region of BMPR2 
has been emphasized by the identification of C-terminal 
truncation mutations of BMPR2 gene in familial primary 
pulmonary hypertension (PPH) patients, although the exact 
molecular function of the C-terminal region of BMPR2 remains 
elusive (41-43). Different BMPs engage different combinations 
of BMPR2 and its type 1 receptors, which is summarized in 
Fig. 1. To understand the pathophysiology of the disease due 
to BMPR2 mutations and eventually develop novel thera-
peutics, it would be important to understand the different 
biological functions of BMPR2 in response to different BMP 
ligands. 

Ligand-receptor oligomerization and signaling 
The BMPs, initially expressed as large inactive precursors, are 
commonly dimerized either with itself or with a different 



Clinical significance linked to mutation in BMPR2 gene
Myung-Jin Kim, et al.

310 BMB Reports http://bmbreports.org

Fig. 1. Schematic summary of BMPR2 and its associated proteins in the BMP-mediated signaling cascade. Different BMP ligands engage 
BMPR2 and different corresponding type 1 receptors, such as ACVR1, BMPR1a, BMPR1b and ALK1. BMP4 and BMP6 ligands bind to a 
receptor complex consisting of BMPR2 and ACVR1; BMP2, BMP4, and BMP6 bind to BMPR2 and BMPR1a; BMP2 and BMP4 bind to 
BMPR2 and BMPR1b; and BMP9 and BMP10 bind to BMPR2 and ALK1. The activity of ACVR1 is negatively regulated by interaction 
with FKBP12. Endoglin, as a co-receptor for ALK1, promotes the receptor complex formation. Engagement of BMP ligands triggers 
SMAD1/5/8 phosphorylation, which then binds to SMAD4. The SMAD complex translocates into the nucleus to induce target gene 
expression. SMAD6 and SMAD7, which are induced by BMP signaling, bind to type 1 receptors and thus, negatively regulate BMP 
signaling by negative feedback loop. Some of the BMP target genes, including ID proteins, are indicated. MAPK, LIMK, ROCK, and Rho 
are activated by SMAD protein-independent manner.

member of BMPs. The inactive dimeric BMPs are cleaved by 
proteolysis to produce the small mature BMPs, which are 
subsequently secreted from cells to conduct biological 
functions (44). It was reported that BMP heterodimers, such as 
BMP2/5, BMP2/6, BMP2/7, BMP2b/7, and BMP4/7, are more 
potent activators of BMP signaling than the homodimers (45). 
For example, BMP4/7 heterodimer induces stronger activity of 
mesoderm than BMP4 or BMP7 homodimers in Xenopus. 
Similarly, BMP2/7 heterodimer has higher activity in bone 
regeneration than BMP2 or BMP7 homodimers in mammals 
(46). In addition, BMPs bind to various BMP receptors with 
different affinities. For instance, BMP2 and BMP4 have a 
higher affinity to BMPR1a and BMPR1b, but relatively low 
affinity to BMPR2 (47). In contrast, BMP7 preferentially binds 
to ACVR2a and ACVR2b, whereas it barely interacts with type 
1 receptors in general (48). The different binding affinities 
allow to engage the ligand and receptor complex, triggering 
the activation of distinctive signaling pathway (49, 50). 

Previous reports indicate that both type 1 and type 2 
receptors individually form a dimer when they are associated 
with the BMP ligands. Therefore, active BMPs engage a 
tetrameric receptor complex (17). In general, while type 2 
receptors are capable of binding BMP ligands on their own, 
the type 1 receptors are unable to interact with BMPs unless 

they are associated with corresponding type 2 receptors. 
BMPR2 weakly binds to BMPs alone, but the interaction is 
augmented in the presence of type 1 receptors (43). The 
serine/threonine kinase domain of type 2 receptors is con-
stitutively active, but the activation of type 1 receptor kinase 
requires physical interaction with type 2 receptors through 
ligand engagement (51-54). Subsequently, the activated type 1 
receptor phosphorylates R-SMAD proteins including SMAD1, 
SMAD5, and SMAD8, and the phosphorylated SMAD1/5/8 is 
associated with the common-mediator SMAD (Co-SMAD), 
SMAD4. The resultant SMAD complex, which functions as a 
transcription activator, translocalizes to the nucleus and 
activates the corresponding target gene expression. In contrast, 
the inhibitory-SMADs (I-SMADs), SMAD6 and SMAD7, are 
responsible for negative feedback of the signaling pathway 
(55). SMAD6 efficiently inhibits BMP signaling, and SMAD7 
attenuates TGF-, activin, and BMP signaling. I-SMADs disrupt 
the association of R-SMAD and Co-SMAD, resulting in 
inhibition of the expression of target genes. SMAD ubiquitin 
regulatory factors (Smurfs), an E3 ubiquitin ligase, leads to the 
ubiquitination and degradation of SMAD proteins, thereby 
modulating the BMP signals. Smurfs enhance the ubiqui-
tination and degradation of type 1 receptors by interacting 
with SMAD7, forming a complex with type 1 receptors (56). 
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Additionally, Smurf1 has shown to control BMP signaling by 
targeting SMAD1/5 for ubiquitination and proteasomal 
degradation, which leads to enhanced sensitivity to the TGF- 
signaling (57).

Target gene regulation
Phosphorylated R-SMAD and SMAD4 complex bind to the 
promoters of target genes, leading to gene expression. Of the 
various BMP target genes, ID proteins (inhibitory of differen-
tiation) have been extensively studied. IDs are expressed 
ubiquitously, although the expression level is down-regulated 
in differentiating cells. In other studies, Ogata et al. showed 
that the ID genes are highly expressed in osteoblast lineages, 
suggesting that IDs play important roles in osteogenesis (58, 
59). Activated IDs inhibit the transcription activity of the 
myogenesis factor, MyoD, which in turn suppresses myogenesis 
(53). Consistently, BMP2 inhibits myogenic differentiation in 
C2C12 myoblasts by inducing transcription of ID1, resulting in 
stimulation of osteoblast differentiation (60). 

Another well characterized BMP target gene is the runt- 
related transcription factor (RUNX), which promotes bone 
formation and hematopoiesis (61). Three RUNX isotypes 
(RUNX1, RUNX2, and RUNX3) have been identified. RUNX 
expression is induced by either SMAD-dependent or SMAD- 
independent manner. As a major transcription factor, RUNX2 
is often associated with SMAD1 or SMAD5, and both factors 
synergistically regulate the transcription of genes required for 
differentiation of mesenchymal progenitor cells into osteo-
blasts (61, 62). RUNX2 up-regulates several osteogenic markers 
including ALP, at the early osteogenic stage, and osteocalcin 
and osteopontin, at the late stage (63). Osterix, another 
transcription factor induced by BMP signaling, mediates the 
differentiation of mesenchymal stem cells (MSCs) into bone 
cells (64). Other transcription factors associated with SMAD 
signaling contain TBX20 and VEGF. TBX20 has an important 
role in cardiac development, and VEGF is the main factor 
involved in angiogenesis. 

ROLES OF BMPR2 DURING THE EMBRYOGENIC 
DEVELOPMENT AND BONE DIFFERENTIATION 

BMPR2 in embryogenesis
Although initially identified as a factor for regulating the 
chondrogenic and osteogenic differentiation, accumulated 
studies demonstrate that BMPR2 plays important roles in early 
embryonic development (65). The expression levels of BMPR2 
fluctuate during embryonic stages, although it is reported that 
basal level of BMPR2 expression is sustained in most tissues 
throughout development. BMPR2 expression is relatively low 
during early stages of heart development, but the expression 
level continuously increases with gradual embryonic develop-
ment, especially in the anteriormost telencephalon, branchial 
arches, limb bud, and tail tip mesoderm. In the later stages, 
BMPR2 expression is specifically high in neuroectoderm of the 

mouth anlagen (66). In this regard, BMPR2 acts as an essential 
regulator in the developing organs and tissues. BMPR2 
deficient mice consistently exhibit severe embryonic lethality 
prior to gastrulation. More specifically, BMPR2 null murine 
embryos induce collapse of the gastrulation and mesoderm 
formation, which are similarly observed in BMP4, ALK3, and 
SMAD4 null embryos. In addition, overexpression of dominant 
negative BMPR2 brings about abnormal mesoderm formation 
and patterning. Epiblast differentiation in the embryo and the 
anterior-posterior (A-P) axis were shown to be abnormal in 
BMPR2 knockout mice, although the differentiation of visceral 
endoderm was relatively normal (65). Taken together, these 
findings suggest that BMPs-BMPR2-mediated signal transduc-
tion is critical for diverse tissue and organ development. 

BMPR2 in vascular development
BMP signaling enhances the endothelial specification, 
subsequent venous differentiation and angiogenesis during 
embryonic development, thereby maintaining the vascular 
homeostasis (30, 67). Notably, BMPR2, as a component of the 
BMP signaling transduction, is prominently expressed in the 
vascular endothelium and smooth muscle layer of the 
pulmonary vasculature in normal lung, but is poorly expressed 
in the airway and arterial smooth muscle (68). BMPR2 is 
expressed in human microvascular endothelial cells (HMVECs), 
human umbilical vein endothelial cells (HUVECs), and aortic 
endothelial cells, highlighting that BMPR2-mediated signaling 
cascade plays important roles in vascular development (69). 

It was reported that BMP2 is expressed in a variety of 
cancers. To understand the functional relevance of the BMP2 
in cancer cells, BMP2-overexpressed A549 cells were injected 
in nude mice, and it was observed that BMP2-mediated 
signaling was involved in tumor angiogenesis (70). In addition, 
Wiley et al. showed that BMP2-BMPR2-mediated signaling 
regulates sprouting angiogenesis from the axial vein in 
zebrafish development, demonstrating that BMPR2-dependent 
signaling promotes endothelial cell proliferation and 
angiogenesis (71). To promote human pulmonary arterial 
endothelial cell (HPAEC) survival and proliferation through 
ERK1/2 activation, BMPR2 is associated with the canonical 
WNT signaling pathway, which also stimulates non-canonical 
RhoA-Rac1 pathway to induce endothelial cell migration (72). 
Defects in BMPR2 cause abnormal vascular remodeling. 
Pulmonary endothelium in BMPR2 knockout mice has shown 
to the inclination of PAH, which is characterized by reduced 
lumen diameter and decreased vasodilation ability resulting 
from increased proliferation of vascular smooth muscle cells 
(VSMCs) and excess deposition of extracellular matrix (ECM) 
in the vessel walls (73). Similarly, BMPR2 mutant mice lacking 
C-terminal tail in the pulmonary artery smooth muscle cells 
(PASMCs) have a PAH-like predisposition. Restoration of 
BMPR2 in mice exposed to chronic hypoxia induces activity of 
BMP-SMAD1/5 signaling, followed by decline of vascular 
remodeling, implying a functional imbalance of BMP signaling 
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(74, 75). Therefore, BMPR2 expression in ECs and SMCs has 
important roles in the maintenance of vascular integrity of the 
pulmonary arteries (76). 

BMPR2 in Osteogenesis 
Although biological functions of BMPR2 have been observed 
in bone formation, the regulatory role of BMPR2 in chond-
rogenesis and osteogenesis is not yet clearly demonstrated. 
BMPR2 is involved in osteoblast differentiation, and is also an 
important mediator in bone formation and skeletal develop-
ment during fracture healing, otospongiosis, and osteosclerosis 
(77-79). During bone development, BMPR2 and its ligands 
induce the differentiation of mesenchymal stem cells toward 
osteoblastic lineage, which promotes the maturation of 
osteoblasts (80). To elucidate the underlying mechanism of 
osteogenesis, fibroblast, MSC, and myoblast have been 
utilized to induce osteogenic differentiation, as naïve osteo-
blasts are difficult to isolate, manipulate, and expand in vitro. 
Briefly, the differentiation process of osteoblasts is classified 
into two steps: first, is the differentiation of MSCs into 
osteoblast progenitors, and second, is the maturation of 
osteoblast progenitors into osteoblasts, presenting the various 
phenotypes of cells organizing bone (81). For the process of 
differentiation, useful alternative cells are the dermal fibro-
blasts, which are easily available and expandable (82). In the 
late 1980s, C3H10T1/2, a pluripotent fibroblastic and MSC, 
was cloned, which can differentiate into a myogenic lineage 
by introducing genes of the muscle-specific regulatory factors, 
including MyoD, myogenin, and Myf-5 (83-86). Since then, 
Katagiri et al. reported that the C3H10T1/2 cells can also be 
differentiated into the osteoblast-like cells by stimulation of 
recombinant human BMP2 protein. They also verified the 
osteogenic function of BMP2 using myoblastic C2C12 cells, in 
which treatment of BMP2 inhibits myotube formation from 
C2C12. Instead, the cells start to induce ID1 expression so that 
the myoblasts can undergo differentiation toward osteoblast 
lineage by BMP2 (81, 87). The osteogenic activity of BMPs is 
dependent on type 2 receptors. For instance, Wu et al. showed 
that both BMPR2 and ACVR2 are responsible for osteogenic 
differentiation of C3H10T1/2 cells with BMP9 treatment (88). 
Taken together, these findings demonstrate that BMPR2- 
mediated signal transduction plays a critical role in skeletal 
development. 

PATHOGENIC MUTATION OF BMPR2

The importance of the diverse BMPR2 functions has been 
highlighted by the identification of potential causative BMPR2 
gene variants in patients present with diseases, including PAH, 
cancers and obesity. BMPR2 gene consists of 13 exons, which 
code for the typical 4 domains described above. Identified 
genetic alterations of BMPR2 gene lead to missense, nonsense, 
frameshift, truncation, and splice site mutations, which 
supposedly results in the loss of BMPR2-mediated signaling 

with some exceptions. BMPR2 mutations have been exten-
sively determined in patients present with PAH characterized 
by elevated pulmonary arterial pressure (89). It was reported 
that PAH patients with BMPR2 mutations usually have a worse 
prognosis than patients with wildtype BMPR2. Not every 
BMPR2 mutations are validated functionally, either with the 
patient-driven cells or with other in vitro assays. In this section, 
we summarize the most up-to-date BMPR2 mutations in 
diverse diseases, with emphasis on experimentally validated 
BMPR2 mutations. 

BMPR2 mutations in PAH
Accumulating body of evidence demonstrates that BMPR2 
mutations are strongly associated with hereditary PAH 
(HPAH). BMPR2 mutations have been determined in 75% of 
HPAH patients and also in 15% of idiopathic PAH (IPAH) 
patients. HPAH has been defined as an autosomal-dominant 
disorder, and thus pathophysiology of the BMPR2 mutation in 
the PAH can be explained by haploinsufficiency. It is worth 
noting that only 20% of people who have the BMPR2 
mutation develop HPAH, suggesting that there are additional 
factors, including genetic alterations or environmental agents, 
required for the development of the disease. Interestingly, it 
was reported that the wildtype BMPR2 transcripts and protein 
expression levels are impaired in PAH cells with BMPR2 
mutation in the other allele. This observation might explain 
the reduction of BMPR2 expression in PAH patient-derived 
cells, although the underlying molecular basis remains elusive. 
It is still not clear why the BMPR2 mutation carriers eventually 
develop PAH. One hypothesis is that decreased BMP signal 
transduction might lead to hyperactivation of the TGF- 
signaling, resulting in hyperproliferation of the SMCs in 
pulmonary arterioles. Consistent with this idea, it was found 
that activation of BMP signaling indeed inhibited the smooth 
muscle cell proliferation. However, the underlying molecular 
mechanism of enhanced TGF- signaling cascade in response 
to reduced BMP activity is largely unknown. Potential 
causative BMPR2 mutations in PAH are basically distributed 
throughout the BMPR2 region, although more frequent BMPR2 
mutations have been identified in key functional domains, 
such as the ligand binding domain and kinase domain. To 
date, over 400 different BMPR2 mutations in PAH patients 
have been reported, and functional defects of some of the 
BMPR2 variants have been validated with patient-driven cells 
or in vitro functional assays. Most of the experimentally 
validated BMPR2 mutations show an impaired SMAD protein- 
mediated signaling cascade (Fig. 2). The BMPR2 mutations in 
PAH have been regularly updated, and the most recent update 
is by Machado et al. However, not all mutations are 
functionally validated using various techniques available in life 
science. As the functional validation of the BMPR2 mutations 
is important and informative to understand the pathophysiology 
of PAH, we will summarize most of the validated BMPR2 
mutations in this review. 
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Fig. 2. Experimentally verified BMPR2 
mutations are indicated on the BMPR2
gene. BMPR2 domains are indicated. 
Pathogenic BMPR2 mutations functio-
nally validated in patient-derived cells 
are indicated above. Pathogenic BMPR2
mutations validated by in vitro func-
tional assays are indicated below.

Yang et al. obtained PASMCs from PAH patients with 
individual BMPR2 mutation leading to p.W9X, p.C347R, 
p.C347Y, and p.N903S. Compared to normal PASMCs, they 
noticed impaired SMAD protein phosphorylation and reduced 
ID1 and ID2 protein expression, which are downstream targets 
of SMAD proteins, in BMPR2 mutant cells treated with BMPs 
(90). Hedges et al. employed patient-derived cultured lympho-
cytes to validate the function of BMPR2 p.W13X mutant. 
Initially, the authors presumed that the p.W13X mutant will 
not be expressed due to the nonsense-mediated RNA decay 
(NMD). However, they surprisingly found that the truncated 
version of BMPR2, which lost the first 151 amino acids, is 
expressed together with the wildtype BMPR2 from normal 
allele, due to the existence of a downstream Kozak sequence 
enabling translation re-initiation (91). The truncated version of 
BMPR2 is an inactive form, as the ligand binding domain is 
lost. Likewise, the functional assays of other BMPR2 variants 
listed in Fig. 2 (upper) have been performed with patient- 
derived PASMCs and PAECs (92, 93). Another way to determine 
functionality of BMPR2 variants can be accomplished by 
ectopic expression of BMPR2 mutants in established cell lines 
to measure the BMPR2-mediated signals using various 
experimental tools, including immunoblotting, quantitative 
polymerase chain reaction, reporter assay and immunostaining. 
For example, to determine NMD of BMPR2 variants, c.2292insA, 
c.2386delG, c.2620G＞T and c.2695C＞T, Nasim et al. 
developed a novel dual fluorescence based assay system; the 
successful expression of the variant will give rise to red and 
green fluorescence simultaneously in HEK293T cells. Indeed, 
the BMPR2 mutations failed to express green fluorescence, 
thereby indicating that the mRNA is degraded by NMD (94). In 
the same studies, various missense BMPR2 mutants were 
expressed in HEK293T cells harboring the luciferase reporter, 
where the luciferase expression is under the BMP responsive 

promoter. Using the reporter system, they were able to 
validate various loss of function missense mutations of BMPR2 
(94). Taken together, the in vitro functional assay proved that 
most of the causative BMPR2 mutations in PAH lead to 
impairment of the SMAD protein-mediated signal transduction. 

BMPR2 mutations in cancer
Similar to tumor suppressor roles of TGF-, BMPR1a and 
SMAD4 genes are frequently mutated in colon cancers, 
suggesting that BMPs-mediated signaling also has tumor 
suppressive functions (95). BMPR2 gene is found to be 
mutated or down-regulated in cancers. It was reported that 
BMPR2 expression level is significantly down-regulated in 
prostate cancer tissues. In addition, expression level of BMPR2 
in the prostate cancer cells is negatively correlated with cancer 
grade (14). Indeed, the reduced expression level of BMPR2 
showed statistically significant poor prognosis, such as cancer 
recurrence and worse 5 year survival (96). BMPR2 expression 
level is significantly abrogated in large portions of micro-
satellite instable (MSI) colorectal cancers. Kodach et al. 
initially found impaired expression of BMPR2 in MSI colon 
cancer cell lines including HCT116, DLD1, SW48, and 
LOVO, while its expression was normal in microsatellite 
stable (MSS) colon cancer cell lines. Reduced BMPR2 
expression level is also confirmed in all the MSI positive colon 
cancer patient tissues tested in the study. Mutation analysis 
revealed that HCT116 and LOVO cell lines have BMPR2 
mutation in the coding region at 7 adenine tract in exon 12 
(c.1742delA), resulting in frameshift and early termination of 
translation. However, such a mutation has not been found in 
the cancer patient tissues. Instead, 11 adenine tract in 3’ UTR 
of BMPR2 gene is mutated in all the colon cancer patient 
tissues, which results in down-regulation of BMPR2 expression 
(97). Later, by analyzing public datasets, Park et al. found the 
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7 adenine tract mutations in BMPR2 gene in MSI positive 
colorectal cancer patients (15). Taken together, these findings 
suggest that genetic alterations of BMPR2 gene and the 
resultant reduced expression of BMPR2 might be responsible 
for cancer development, although the underlying mechanism 
remains largely elusive. 

BMPR2 mutation in obesity
BMP-mediated signaling has been implicated in controlling 
adipocyte differentiation, and it was therefore proposed that 
BMPR2 expression might be positively correlated to obesity 
(98). Indeed, Schleinitz et al. found that BMPR2 mRNA level is 
significantly high in both visceral and subcutaneous adipose 
tissue of the overweight or obese population, compared to the 
lean population. In an attempt to define genetic alterations in 
BMPR2 of overweight population, two intronic single 
nucleotide polymorphisms (SNPs) were identified: rs6717924 
and rs13426118. Gene expression analysis showed that allele 
carrying rs6717924 expresses higher BMPR2 mRNA compared 
to the other wildtype allele. The authors proposed that 
transcription factor binding sites surrounding the SNPs might 
be responsible for the enhanced gene expression, although the 
molecular basis of the higher BMPR2 expression in allele 
carrying rs6717924 remains elusive (16). 

CONCLUSION AND PERSPECTIVES

BMPR2, a receptor for the TGF- superfamily, was identified in 
the 1990s. Since then, understanding the functional roles of 
BMPR2 has significantly expanded our knowledge in the fields 
of embryonic development, vasculogenesis and osteogenesis. 
Identification of causative BMPR2 mutations in HPAH, IPAH 
and other diseases emphasizes the important physiological 
functions of BMPR2. In particular, it is widely accepted that 
functional defects of BMPR2 are implicated in the develop-
ment of PAH. Indeed, most of the BMPR2 mutations identified 
in PAH are nonsense mutations, the mRNA of which get 
degraded by NMD. In addition, in vitro functional assays 
proved that most of the BMPR2 missense mutations lead to 
defects in SMAD protein-mediated signal transduction. 
Although haploinsufficiency is the common disease mechanism 
in PAH, significantly reduced BMPR2 transcripts have been 
found in patient-derived pulmonary vascular cells, suggesting 
that not only the BMPR2 mutated allele, but wildtype BMPR2 
allele is also not expressed due to the unknown additional 
defects in the wildtype allele. Considering the low penetrance 
of HPAH, transcript level of wildtype BMPR2 allele would be 
the reasonable diagnostic marker for PAH. Questions to be 
addressed here pertain to understanding the molecular basis of 
the development of PAH. Advanced sequencing technology 
allows us to find additional causative mutations of BMPR2 in 
patients present with PAH. However, only limited experimental 
results are currently available to understand the pathophysio-
logy of PAH, due to the impairment of BMPR2 functions. 

Understanding the disease at the molecular level is the 
perquisite to overcoming the disease. Other than PAH, poten-
tial causative mutations of BMPR2 gene have been determined 
in cancers and obesity. Since BMPR2 plays important roles in 
diverse biological pathways, it would possible to identify 
causative BMPR2 mutations in other diseases also. Analyzing 
genetic alterations in human diseases is one of the best ways 
to understand the molecular functions of the genes. Further 
efforts to characterize the gene at the bench will be critical for 
introducing new ways to diagnosis and cure the disease in 
return. 
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