• 제목/요약/키워드: transforming growth factor

검색결과 549건 처리시간 0.026초

Lodoxamide Attenuates Hepatic Fibrosis in Mice: Involvement of GPR35

  • Kim, Mi-Jeong;Park, Soo-Jin;Nam, So-Yeon;Im, Dong-Soon
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.92-97
    • /
    • 2020
  • A previous pharmacogenomic analysis identified cromolyn, an anti-allergic drug, as an effective anti-fibrotic agent that acts on hepatocytes and stellate cells. Furthermore, cromolyn was shown to be a G protein-coupled receptor 35 (GPR35) agonist. However, it has not been studied whether anti-fibrotic effects are mediated by GPR35. Therefore, in this study, the role of GPR35 in hepatic fibrosis was investigated through the use of lodoxamide, another anti-allergic drug and a potent GPR35 agonist. Long-term treatment with carbon tetrachloride induced hepatic fibrosis, which was inhibited by treatment with lodoxamide. Furthermore, CID2745687, a specific GPR35 antagonist, reversed lodoxamide-mediated anti-fibrotic effects. In addition, lodoxamide treatment showed significant effects on the mRNA expression of collagen Iα1, collagen Iα2, and TGF-β1 in the extracellular matrix. However, a transforming growth factor α (TGF-α) shedding assay revealed lodoxamide not to be a potent agonist of mouse GPR35 in vitro. Therefore, these results showed anti-fibrotic effects of lodoxamide in mice and raise concerns how lodoxamide protects against liver fibrosis in vivo and whether GPR35 is involved in the action.

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Protective effects of quercetin-3-glucosyl-(1-2)-rhamnoside from Schizophragma hydrangeoides leaves on ultraviolet A-induced photoaging in human dermal fibroblasts

  • So Yeon Oh;Sung Chun Kim;Ho Bong Hyun;Hyejin Hyeon;Boram Go;Yong-Hwan Jung;Young-Min Ham
    • Journal of Applied Biological Chemistry
    • /
    • 제65권4호
    • /
    • pp.277-286
    • /
    • 2022
  • Schizophragma hydrangeoides (S. hydrangeoides) is a vine endogenous to Jeju Island and Ulleungdo, where it grows attached to the foothills and rock surfaces. Previous research has mostly focused on the whitening effect of S. hydrangeoides leaf extract. In this study, we investigated S. hydrangeoides leaf extract further, and detected four phytochemicals in the extract: chlorogenic acid, quercetin-3-O-glucosyl-(1-2)-rhamnoside, quercetin-3-O-xylosyl-(1-2)-rhamnoside, and quercitrin. We pretreated human dermal fibroblast (HDFn) cells with previously established concentrations of the four compounds for 1 h before ultraviolet A (UVA) irradiation. Among the four compounds, quercetin-3-O-glucosyl-(1-2)-rhamnoside (Q-3-GR) best inhibited matrix metalloproteinase-1 (MMP-1) levels. Thus, we investigated the protective effects of Q-3-GR on photoaging and its underlying mechanisms. Q-3-GR significantly reduced MMP-1 production and inhibited MMP-1 protein expression in UVA-irradiated HDFn cells. Furthermore, Q-3-GR increased procollagen type I production and protein expression. Q-3-GR exerted its anti-photoaging effects by downregulating the mitogen-activated protein kinase/ activator protein-1 signaling pathway, and upregulating the transforming growth factor-β/Smad signaling pathway. Thus, S. hydrangeoides leaf-derived Q-3-GR is a potential potent cosmetic ingredient for UV-induced skin aging.

Potential Anti-Allergy and Immunomodulatory Properties of Lactococcus lactis LB 1022 Observed In Vitro and in an Atopic Dermatitis Mouse Model

  • Jihye Baek;Jong-Hwa Kim;Wonyong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.823-830
    • /
    • 2023
  • Lactococcus lactis is a lactic acid bacterium and used in the dairy food industry. The ameliorating effects of Lactobacillus species on atopic dermatitis (AD) have been extensively studied, but the specific effect of L. lactis strains has not yet been investigated. In this study, the efficacy of L. lactis LB 1022, isolated from natural cheese, was evaluated using RAW 264.7, HMC-1 and HaCaT cell lines and an ovalbumin-sensitized AD mouse model. L. lactis LB 1022 exhibited nitric oxide suppression and anti-allergy and anti-inflammatory activity in vitro. Oral administration of L. lactis LB 1022 to AD mice significantly reduced the levels of IgE, mast cells, and eosinophils, and a range of T cell-mediated T helper Th1, Th2, and Th17-type cytokines under interleukin (IL)-10, transforming growth factor-β (TGF-β), thymus and activation-regulated chemokine (TARC), and thymic stromal lymphopoietin (TSLP). In addition, L. lactis LB 1022 treatment increased the concentration of short-chain fatty acids. Overall, L. lactis LB 1022 significantly modulated AD-like symptoms by altering metabolites and the immune response, illustrating its potential as candidate for use in functional food supplements to alleviate AD.

Genistein alleviates pulmonary fibrosis by inactivating lung fibroblasts

  • Seung-hyun Kwon;Hyunju Chung;Jung-Woo Seo;Hak Su Kim
    • BMB Reports
    • /
    • 제57권3호
    • /
    • pp.143-148
    • /
    • 2024
  • Pulmonary fibrosis is a serious lung disease that occurs predominantly in men. Genistein is an important natural soybean-derived phytoestrogen that affects various biological functions, such as cell migration and fibrosis. However, the antifibrotic effects of genistein on pulmonary fibrosis are largely unknown. The antifibrotic effects of genistein were evaluated using in vitro and in vivo models of lung fibrosis. Proteomic data were analyzed using nano-LC-ESI-MS/MS. Genistein significantly reduced transforming growth factor (TGF)-β1-induced expression of collagen type I and α-smooth muscle actin (SMA) in MRC-5 cells and primary fibroblasts from patients with idiopathic pulmonary fibrosis (IPF). Genistein also reduced TGF-β1-induced expression of p-Smad2/3 and p-p38 MAPK in fibroblast models. Comprehensive protein analysis confirmed that genistein exerted an anti-fibrotic effect by regulating various molecular mechanisms, such as unfolded protein response, epithelial mesenchymal transition (EMT), mammalian target of rapamycin complex 1 (mTORC1) signaling, cell death, and several metabolic pathways. Genistein was also found to decrease hydroxyproline levels in the lungs of BLM-treated mice. Genistein exerted an anti-fibrotic effect by preventing fibroblast activation, suggesting that genistein could be developed as a pharmacological agent for the prevention and treatment of pulmonary fibrosis.

폐암환자의 암조직내 CYFRA 21-1과 Epidermal Growth Factor Receptor의 측정치에 대한 연구 (The Study of CYFRA 21-1 and Epidermal Growth Factor Receptor Levels in Cancer Tissue of Bronchogenic Carcinoma Patients)

  • 김대연;김송명
    • Journal of Chest Surgery
    • /
    • 제30권9호
    • /
    • pp.854-861
    • /
    • 1997
  • CYFRA 21-1은 폐암중에서 편평상피성 암세포의 세포질에 존재하는 세포각질 분절 19의 분절들로서 암세 포가 파괴되거나 분해시 혈중내로 유리되는 것으로 특징적인 2개의 단일클론성의 항체인 KS 19-1과 BM 19-21로서 면역 방사계수검사를 이용하면 혈청내에 용해된 량을 정량할 수 있다. 암세포의 세포벽에 존재하는 EGF-R과 EGF에 대하여 관심이 집중되고 있다. EGF-R의 존재는 클론성 비소세포암 세포계열을 조사한 결과 4종의 비소세포암들은 EGF-R을 발현한다고 밝혀졌다. 그러나 현재의 검사법으로는 EGF 검출이 어려워서 EGF보다 TCF-Q의 역할에 초점이 모여지고 있다. 폐암세포에 EGF-R의 존재는 자가분비나 부분비성 성장기전이 작용된다는 것을 시사한다. 아울러 정상인 의 혈청과 소변에서 검출이 되며, 이러한 사실을 종합해 본 결과 EGF-R은 폐암의 발달과 진행에 중요한 역 할을 할 것으로 추정된다. 폐암으로 확진된 30례의 환자를 연구 대상으로 하고, 개흉수술로 적출한 표본을 주병소와 이행부위 그리 고 대조부위로 구분하여 조직 절편을 약 5 m3크기로각각 잘라서 액화 질소에 급속 냉동 보관을 하였다. 냉 동 보관한 조직 절편을 조직마쇄 藪$[$\ulcorner마쇄시킨후 원심분리기에서 상층액을 일정량 채취하여 방사선면역 분석법으로 CYFRA 21-1과 EGF-R 정량검사를 시행하였으며, 그 결과를 조직학적 분류와 병기에 따른 분류 로 상호 비교 분석하였다. 이상과 같은 연구결과로 아래와 같은 요점들을 발견하였다. 1. 암 이행부위에서는 악성화를 나타내는 경향이 더욱 활발하여 세포질성분의 부족으로 CYFRA 21-1의 농도 는 낮게 나타났다. CYFRA 21-1의 농도는 암이행부위에서 가장 낮았고, 병기가 증가할수록 증가하였다. 대 조조직에서는 세포질 성분이 풍부하여 주병변부위보다도 CYFRA 21-1의 농도가 높게 나왔다. 2. EGF-R의 농도는 주병변부위에서 가장 높게 나왔고, 편평세포암에서 보다는 선암에서 높았고, 병기별로는 1, 1띠에서는 이행부위가 111, IV기에섞는 주병변부위가 높게 나왔다. EGF-R의 농도는 대조조직보다는 암 주병변부위로 갈수록 증가하였다. 3. CYFBLt 21-1은 세포질성분이며, EGF-R은 세포벽 성분으로서 두 물질사이에 상관관계가 없었다. 결론적으로 현재까지 CYFRA 21-1은 혈청 내에서만 주로 연구되어져 왔으며 비소세포암 중에서 특히 편 평세포암종에서 의미있게 증가한다고 하였다. 그러나,. CYFRA 21-1의 조직과 혈청 내의 정량치가 뜻하는 의 미는 서로 달랐으며, 암조직내에서 대조조직내보다 CYFRA 21-1 치가 더 낮게 나온 것은 암세포내 에서는 세 포질 성분의 고갈로 인한 것으로 추정되며 암세포의 활동성과는 무관한 것으로 판단된다. EGF-R은 세포벽내에 존재하는 수용체로서 암세포의 증식에 따라 증가하는 양상을 보이며 대조조직보다는 암세포에서 유의한 증가를 보이는 것은 종양 증식과 암표지자로서 의의가 있는 것으로 판단된다.

  • PDF

TGF-$\beta$1와 IGF-I이 소 난포란의 체외성숙 및 체외수정란의 배양에 미치는 영향 (Effect of TGF-$\beta$1 and IGF-I on Bovine In Vitro Maturation and Embryo Culture)

  • 서태광
    • 한국가축번식학회지
    • /
    • 제20권2호
    • /
    • pp.111-117
    • /
    • 1996
  • 본 연구는 혈청첨가 또는 무첨가에 따른 소 난포란의 체외성숙에 있어서 참가된 TGF-$\beta$1과 IGF-I이 그후의 수정 및 발생에 미치는 영향과, 이들 growth factor의 농도에 따른 8세포기 소 체외수정란의 발달에 미치는 영향을 조사하고자 실시하였다. 도축장에서 얻어진 난소로부터 채취된 난포란을 20% FBS가 첨가 또는 첨가되지 않은 TCM-199에 TGF-$\beta$1, IGF-I 또는 TGF-$\beta$1+IGF-I을 각각 10ng/ml 첨가하여 38.5$^{\circ}C$에서 24시간 배양하여 체외성숙을 유기하였다. 성숙된 난자를 1$\times$106/ml 정자농도로 수정후 24시간에 glucoserk 첨가되지 않은 CZB 배양액으로 옮겨 48시간 배양한 다음, TCM-199+20%FBS에서 96시간 추가배양하였다. 본 연구에서 혈청이 첨가된 난포란의 체외성숙배양액에 첨가된 growth factor들은 수정후의 배분할 및 배발생에 영향을 미치지 않았다. 혈청이 첨가되지 않은 경우에서는 TGF-$\beta$1의 첨가는 배분할 및 배발생율을 향상시켰다(P<0.05). 한편 TCM-199+20%FBS에 5, 10ng/ml의 TGF-$\beta$1 및 5, 10, 50, 100ng/ml의 IGF-I을 각각 첨가후 8세포기 체외수정란을 배양한 결과, 10ng/ml TGF-$\beta$1의 첨가는 배반포기로의 발생율을 향상시켰다(P<0.05). 결론적으로, 혈청이 포함되지 않은 소 난포란의 체외성숙 배양액, 또는 수정란의 체외배양액에 10ng/ml TGF-1의 첨가는 배반포기로의 발생율을 향상시킨다.

  • PDF

Cell Growth of BG-1 Ovarian Cancer Cells was Promoted by 4-Tert-octylphenol and 4-Nonylphenol via Downregulation of TGF-β Receptor 2 and Upregulation of c-myc

  • Park, Min-Ah;Hwang, Kyung-A;Lee, Hye-Rim;Yi, Bo-Rim;Choi, Kyung-Chul
    • Toxicological Research
    • /
    • 제27권4호
    • /
    • pp.253-259
    • /
    • 2011
  • Transforming growth factor ${\beta}$ (TGF-${\beta}$) is involved in cellular processes including growth, differentiation, apoptosis, migration, and homeostasis. Generally, TGF-${\beta}$ is the inhibitor of cell cycle progression and plays a role in enhancing the antagonistic effects of many growth factors. Unlike the antiproliferative effect of TGF-${\beta}$, E2, an endogeneous estrogen, is stimulating cell proliferation in the estrogen-dependent organs, which are mediated via the estrogen receptors, $ER{\alpha}$ and $ER{\beta}$, and may be considered as a critical risk factor in tumorigenesis of hormone-responsive cancers. Previous researches reported the cross-talk between estrogen/$ER{\alpha}$ and TGF-${\beta}$ pathway. Especially, based on the E2-mediated inhibition of TGF-${\beta}$ signaling, we examined the inhibition effect of 4-tert-octylphenol (OP) and 4-nonylphenol (NP), which are well known xenoestrogens in endocrine disrupting chemicals (EDCs), on TGF-${\beta}$ signaling via semi-quantitative reverse-transcription PCR. The treatment of E2, OP, or NP resulted in the downregulation of TGF-${\beta}$ receptor2 (TGF-${\beta}$ R2) in TGF-${\beta}$ signaling pathway. However, the expression level of TGF-${\beta}1$ and TGF-${\beta}$ receptor1 (TGF-${\beta}$ R1) genes was not altered. On the other hand, E2, OP, or NP upregulated the expression of a cell-cycle regulating gene, c-myc, which is a oncogene and a downstream target gene of TGF-${\beta}$ signaling pathway. As a result of downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc, E2, OP, or NP increased cell proliferation of BG-1 ovarian cancer cells. Taken together, these results suggest that E2 and these two EDCs may mediate cancer cell proliferation by inhibiting TGF-${\beta}$ signaling via the downregulation of TGF-${\beta}$ R2 and the upregulation of c-myc oncogene. In addition, it can be inferred that these EDCs have the possibility of tumorigenesis in estrogen-responsive organs by certainly representing estrogenic effect in inhibiting TGF-${\beta}$ signaling.

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권5호
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • 대한의생명과학회지
    • /
    • 제11권2호
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF