DOI QR코드

DOI QR Code

Lodoxamide Attenuates Hepatic Fibrosis in Mice: Involvement of GPR35

  • Kim, Mi-Jeong (College of Pharmacy, Pusan National University) ;
  • Park, Soo-Jin (College of Pharmacy, Pusan National University) ;
  • Nam, So-Yeon (College of Pharmacy, Pusan National University) ;
  • Im, Dong-Soon (College of Pharmacy, Pusan National University)
  • Received : 2018.11.26
  • Accepted : 2019.05.21
  • Published : 2019.12.30

Abstract

A previous pharmacogenomic analysis identified cromolyn, an anti-allergic drug, as an effective anti-fibrotic agent that acts on hepatocytes and stellate cells. Furthermore, cromolyn was shown to be a G protein-coupled receptor 35 (GPR35) agonist. However, it has not been studied whether anti-fibrotic effects are mediated by GPR35. Therefore, in this study, the role of GPR35 in hepatic fibrosis was investigated through the use of lodoxamide, another anti-allergic drug and a potent GPR35 agonist. Long-term treatment with carbon tetrachloride induced hepatic fibrosis, which was inhibited by treatment with lodoxamide. Furthermore, CID2745687, a specific GPR35 antagonist, reversed lodoxamide-mediated anti-fibrotic effects. In addition, lodoxamide treatment showed significant effects on the mRNA expression of collagen Iα1, collagen Iα2, and TGF-β1 in the extracellular matrix. However, a transforming growth factor α (TGF-α) shedding assay revealed lodoxamide not to be a potent agonist of mouse GPR35 in vitro. Therefore, these results showed anti-fibrotic effects of lodoxamide in mice and raise concerns how lodoxamide protects against liver fibrosis in vivo and whether GPR35 is involved in the action.

Keywords

References

  1. Bataller, R. and Brenner, D. A. (2005) Liver fibrosis. J. Clin. Invest. 115, 209-218. https://doi.org/10.1172/JCI24282
  2. Berlinguer-Palmini, R., Masi, A., Narducci, R., Cavone, L., Maratea, D., Cozzi, A., Sili, M., Moroni, F. and Mannaioni, G. (2013) GPR35 activation reduces $Ca^{2+}$ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8, e82180. https://doi.org/10.1371/journal.pone.0082180
  3. Borroto-Escuela, D. O., Rodriguez, D., Romero-Fernandez, W., Kapla, J., Jaiteh, M., Ranganathan, A., Lazarova, T., Fuxe, K. and Carlsson, J. (2018) Mapping the interface of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine receptor heteromer. Front. Pharmacol. 9, 829. https://doi.org/10.3389/fphar.2018.00829
  4. Choi, J. S., Kim, J. K., Yang, Y. J., Kim, Y., Kim, P., Park, S. G., Cho, E. Y., Lee, D. H. and Choi, J. W. (2015) Identification of cromolyn sodium as an anti-fibrotic agent targeting both hepatocytes and hepatic stellate cells. Pharmacol. Res. 102, 176-183. https://doi.org/10.1016/j.phrs.2015.10.002
  5. Fallarini, S., Magliulo, L., Paoletti, T., de Lalla, C. and Lombardi, G. (2010) Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun. 398, 420-425. https://doi.org/10.1016/j.bbrc.2010.06.091
  6. Funke, M., Thimm, D., Schiedel, A. C. and Muller, C. E. (2013) 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 5182-5197. https://doi.org/10.1021/jm400587g
  7. Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Caron, M., Zhao, P., Abood, M. E. and Barak, L. S. (2010a) Selective GPR35 antagonists-probes 1 & 2. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD).
  8. Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Zhao, P., Caron, M. G., Abood, M. E. and Barak, L. S. (2010b) Selective GPR35 Antagonists-Probe 3. In Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD).
  9. Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029. https://doi.org/10.1038/nmeth.2172
  10. Jenkins, L., Brea, J., Smith, N. J., Hudson, B. D., Reilly, G., Bryant, N. J., Castro, M., Loza, M. I. and Milligan, G. (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of b-arrestin-2 and activate Ga13. Biochem. J. 432, 451-459. https://doi.org/10.1042/BJ20101287
  11. Jenkins, L., Harries, N., Lappin, J. E., MacKenzie, A. E., Neetoo-Isseljee, Z., Southern, C., McIver, E. G., Nicklin, S. A., Taylor, D. L. and Milligan, G. (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J. Pharmacol. Exp. Ther. 343, 683-695. https://doi.org/10.1124/jpet.112.198945
  12. Lim, S. W., Lee, D. R., Choi, B. K., Kim, H. S., Yang, S. H., Suh, J. W. and Kim, K. S. (2016) Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac. J. Trop. Med. 9, 1158-1164. https://doi.org/10.1016/j.apjtm.2016.10.009
  13. MacKenzie, A. E., Caltabiano, G., Kent, T. C., Jenkins, L., McCallum, J. E., Hudson, B. D., Nicklin, S. A., Fawcett, L., Markwick, R., Charlton, S. J. and Milligan, G. (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol. Pharmacol. 85, 91-104. https://doi.org/10.1124/mol.113.089482
  14. Milligan, G. (2018) G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br. J. Pharmacology 175, 2543-2553. https://doi.org/10.1111/bph.14042
  15. Nallagangula, K. S., Nagaraj, S. K., Venkataswamy, L. and Chandrappa, M. (2017) Liver fibrosis: a compilation on the biomarkers status and their significance during disease progression. Future Sci. OA 4, FSO250. https://doi.org/10.4155/fsoa-2017-0083
  16. Nam, S. Y., Park, S. J. and Im, D. S. (2019) Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal. 53, 190-200. https://doi.org/10.1016/j.cellsig.2018.10.001
  17. Neetoo-Isseljee, Z., MacKenzie, A. E., Southern, C., Jerman, J., Mc-Iver, E. G., Harries, N., Taylor, D. L. and Milligan, G. (2013) Highthroughput identification and characterization of novel, speciesselective GPR35 agonists. J. Pharmacol. Exp. Ther. 344, 568-578. https://doi.org/10.1124/jpet.112.201798
  18. O’Dowd, B. F., Nguyen, T., Marchese, A., Cheng, R., Lynch, K. R., Heng, H. H., Kolakowski, L. F., Jr. and George, S. R. (1998) Discovery of three novel G-protein-coupled receptor genes. Genomics 47, 310-313. https://doi.org/10.1006/geno.1998.5095
  19. Park, S. J. and Im, D. S. (2019) Deficiency of sphingosine-1-phosphate receptor 2 (S1P2) attenuates bleomycin-induced pulmonary fibrosis. Biomol. Ther. (Seoul) 27, 318-326. https://doi.org/10.4062/biomolther.2018.131
  20. Park, S. J., Lee, S. J., Nam, S. Y. and Im, D. S. (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br. J. Pharmacol. 175, 154-161. https://doi.org/10.1111/bph.14082
  21. Smith, T. H., Li, J. G., Dores, M. R. and Trejo, J. (2017) Proteaseactivated receptor-4 and purinergic receptor P2Y12 dimerize, cointernalize, and activate Akt signaling via endosomal recruitment of ${\beta}$-arrestin. J. Biol. Chem. 292, 13867-13878. https://doi.org/10.1074/jbc.M117.782359
  22. Taniguchi, Y., Tonai-Kachi, H. and Shinjo, K. (2006) Zaprinast, a wellknown cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett. 580, 5003-5008. https://doi.org/10.1016/j.febslet.2006.08.015
  23. Thimm, D., Funke, M., Meyer, A. and Muller, C. E. (2013) 6-Bromo-8-(4-[(3)H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid: a powerful tool for studying orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 7084-7099. https://doi.org/10.1021/jm4009373
  24. Tsukahara, T., Hamouda, N., Utsumi, D., Matsumoto, K., Amagase, K. and Kato, S. (2017) G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonicepithelial cells. Pharmacol. Res. 123, 27-39. https://doi.org/10.1016/j.phrs.2017.06.009
  25. Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H. and Ling, L. (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021-22028. https://doi.org/10.1074/jbc.M603503200
  26. Yang, Y., Lu, J. Y., Wu, X., Summer, S., Whoriskey, J., Saris, C. and Reagan, J. D. (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86, 1-5. https://doi.org/10.1159/000314164
  27. Zhao, P., Sharir, H., Kapur, A., Cowan, A., Geller, E. B., Adler, M. W., Seltzman, H. H., Reggio, P. H., Heynen-Genel, S., Sauer, M., Chung, T. D., Bai, Y., Chen, W., Caron, M. G., Barak, L. S. and Abood, M. E. (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and b-arrestin2 with antinociceptive activity. Mol. Pharmacol. 78, 560-568. https://doi.org/10.1124/mol.110.066746

Cited by

  1. Therapeutic Opportunities and Challenges in Targeting the Orphan G Protein-Coupled Receptor GPR35 vol.3, pp.5, 2020, https://doi.org/10.1021/acsptsci.0c00079
  2. GPR35 in Intestinal Diseases: From Risk Gene to Function vol.12, 2020, https://doi.org/10.3389/fimmu.2021.717392
  3. G Protein-Coupled Receptor GPR35 Suppresses Lipid Accumulation in Hepatocytes vol.4, pp.6, 2021, https://doi.org/10.1021/acsptsci.1c00224