References
- Bataller, R. and Brenner, D. A. (2005) Liver fibrosis. J. Clin. Invest. 115, 209-218. https://doi.org/10.1172/JCI24282
-
Berlinguer-Palmini, R., Masi, A., Narducci, R., Cavone, L., Maratea, D., Cozzi, A., Sili, M., Moroni, F. and Mannaioni, G. (2013) GPR35 activation reduces
$Ca^{2+}$ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS ONE 8, e82180. https://doi.org/10.1371/journal.pone.0082180 - Borroto-Escuela, D. O., Rodriguez, D., Romero-Fernandez, W., Kapla, J., Jaiteh, M., Ranganathan, A., Lazarova, T., Fuxe, K. and Carlsson, J. (2018) Mapping the interface of a GPCR dimer: a structural model of the A2A adenosine and D2 dopamine receptor heteromer. Front. Pharmacol. 9, 829. https://doi.org/10.3389/fphar.2018.00829
- Choi, J. S., Kim, J. K., Yang, Y. J., Kim, Y., Kim, P., Park, S. G., Cho, E. Y., Lee, D. H. and Choi, J. W. (2015) Identification of cromolyn sodium as an anti-fibrotic agent targeting both hepatocytes and hepatic stellate cells. Pharmacol. Res. 102, 176-183. https://doi.org/10.1016/j.phrs.2015.10.002
- Fallarini, S., Magliulo, L., Paoletti, T., de Lalla, C. and Lombardi, G. (2010) Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun. 398, 420-425. https://doi.org/10.1016/j.bbrc.2010.06.091
- Funke, M., Thimm, D., Schiedel, A. C. and Muller, C. E. (2013) 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 5182-5197. https://doi.org/10.1021/jm400587g
- Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Caron, M., Zhao, P., Abood, M. E. and Barak, L. S. (2010a) Selective GPR35 antagonists-probes 1 & 2. In Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD).
- Heynen-Genel, S., Dahl, R., Shi, S., Sauer, M., Hariharan, S., Sergienko, E., Dad, S., Chung, T. D. Y., Stonich, D., Su, Y., Zhao, P., Caron, M. G., Abood, M. E. and Barak, L. S. (2010b) Selective GPR35 Antagonists-Probe 3. In Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD).
- Inoue, A., Ishiguro, J., Kitamura, H., Arima, N., Okutani, M., Shuto, A., Higashiyama, S., Ohwada, T., Arai, H., Makide, K. and Aoki, J. (2012) TGFa shedding assay: an accurate and versatile method for detecting GPCR activation. Nat. Methods 9, 1021-1029. https://doi.org/10.1038/nmeth.2172
- Jenkins, L., Brea, J., Smith, N. J., Hudson, B. D., Reilly, G., Bryant, N. J., Castro, M., Loza, M. I. and Milligan, G. (2010) Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of b-arrestin-2 and activate Ga13. Biochem. J. 432, 451-459. https://doi.org/10.1042/BJ20101287
- Jenkins, L., Harries, N., Lappin, J. E., MacKenzie, A. E., Neetoo-Isseljee, Z., Southern, C., McIver, E. G., Nicklin, S. A., Taylor, D. L. and Milligan, G. (2012) Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J. Pharmacol. Exp. Ther. 343, 683-695. https://doi.org/10.1124/jpet.112.198945
- Lim, S. W., Lee, D. R., Choi, B. K., Kim, H. S., Yang, S. H., Suh, J. W. and Kim, K. S. (2016) Protective effects of a polymethoxy flavonoids-rich Citrus aurantium peel extract on liver fibrosis induced by bile duct ligation in mice. Asian Pac. J. Trop. Med. 9, 1158-1164. https://doi.org/10.1016/j.apjtm.2016.10.009
- MacKenzie, A. E., Caltabiano, G., Kent, T. C., Jenkins, L., McCallum, J. E., Hudson, B. D., Nicklin, S. A., Fawcett, L., Markwick, R., Charlton, S. J. and Milligan, G. (2014) The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol. Pharmacol. 85, 91-104. https://doi.org/10.1124/mol.113.089482
- Milligan, G. (2018) G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br. J. Pharmacology 175, 2543-2553. https://doi.org/10.1111/bph.14042
- Nallagangula, K. S., Nagaraj, S. K., Venkataswamy, L. and Chandrappa, M. (2017) Liver fibrosis: a compilation on the biomarkers status and their significance during disease progression. Future Sci. OA 4, FSO250. https://doi.org/10.4155/fsoa-2017-0083
- Nam, S. Y., Park, S. J. and Im, D. S. (2019) Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal. 53, 190-200. https://doi.org/10.1016/j.cellsig.2018.10.001
- Neetoo-Isseljee, Z., MacKenzie, A. E., Southern, C., Jerman, J., Mc-Iver, E. G., Harries, N., Taylor, D. L. and Milligan, G. (2013) Highthroughput identification and characterization of novel, speciesselective GPR35 agonists. J. Pharmacol. Exp. Ther. 344, 568-578. https://doi.org/10.1124/jpet.112.201798
- O’Dowd, B. F., Nguyen, T., Marchese, A., Cheng, R., Lynch, K. R., Heng, H. H., Kolakowski, L. F., Jr. and George, S. R. (1998) Discovery of three novel G-protein-coupled receptor genes. Genomics 47, 310-313. https://doi.org/10.1006/geno.1998.5095
- Park, S. J. and Im, D. S. (2019) Deficiency of sphingosine-1-phosphate receptor 2 (S1P2) attenuates bleomycin-induced pulmonary fibrosis. Biomol. Ther. (Seoul) 27, 318-326. https://doi.org/10.4062/biomolther.2018.131
- Park, S. J., Lee, S. J., Nam, S. Y. and Im, D. S. (2018) GPR35 mediates lodoxamide-induced migration inhibitory response but not CXCL17-induced migration stimulatory response in THP-1 cells; is GPR35 a receptor for CXCL17? Br. J. Pharmacol. 175, 154-161. https://doi.org/10.1111/bph.14082
-
Smith, T. H., Li, J. G., Dores, M. R. and Trejo, J. (2017) Proteaseactivated receptor-4 and purinergic receptor P2Y12 dimerize, cointernalize, and activate Akt signaling via endosomal recruitment of
${\beta}$ -arrestin. J. Biol. Chem. 292, 13867-13878. https://doi.org/10.1074/jbc.M117.782359 - Taniguchi, Y., Tonai-Kachi, H. and Shinjo, K. (2006) Zaprinast, a wellknown cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett. 580, 5003-5008. https://doi.org/10.1016/j.febslet.2006.08.015
- Thimm, D., Funke, M., Meyer, A. and Muller, C. E. (2013) 6-Bromo-8-(4-[(3)H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid: a powerful tool for studying orphan G protein-coupled receptor GPR35. J. Med. Chem. 56, 7084-7099. https://doi.org/10.1021/jm4009373
- Tsukahara, T., Hamouda, N., Utsumi, D., Matsumoto, K., Amagase, K. and Kato, S. (2017) G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonicepithelial cells. Pharmacol. Res. 123, 27-39. https://doi.org/10.1016/j.phrs.2017.06.009
- Wang, J., Simonavicius, N., Wu, X., Swaminath, G., Reagan, J., Tian, H. and Ling, L. (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 281, 22021-22028. https://doi.org/10.1074/jbc.M603503200
- Yang, Y., Lu, J. Y., Wu, X., Summer, S., Whoriskey, J., Saris, C. and Reagan, J. D. (2010) G-protein-coupled receptor 35 is a target of the asthma drugs cromolyn disodium and nedocromil sodium. Pharmacology 86, 1-5. https://doi.org/10.1159/000314164
- Zhao, P., Sharir, H., Kapur, A., Cowan, A., Geller, E. B., Adler, M. W., Seltzman, H. H., Reggio, P. H., Heynen-Genel, S., Sauer, M., Chung, T. D., Bai, Y., Chen, W., Caron, M. G., Barak, L. S. and Abood, M. E. (2010) Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and b-arrestin2 with antinociceptive activity. Mol. Pharmacol. 78, 560-568. https://doi.org/10.1124/mol.110.066746
Cited by
- Therapeutic Opportunities and Challenges in Targeting the Orphan G Protein-Coupled Receptor GPR35 vol.3, pp.5, 2020, https://doi.org/10.1021/acsptsci.0c00079
- GPR35 in Intestinal Diseases: From Risk Gene to Function vol.12, 2020, https://doi.org/10.3389/fimmu.2021.717392
- G Protein-Coupled Receptor GPR35 Suppresses Lipid Accumulation in Hepatocytes vol.4, pp.6, 2021, https://doi.org/10.1021/acsptsci.1c00224