• Title/Summary/Keyword: transformation semigroup

Search Result 22, Processing Time 0.021 seconds

DECOMPOSITIONS OF GENERALIZED TRANSFORMATION SEMIGROUPS

  • Cho, Sung-Jin;Kim, Jae-Gyeom
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.227-238
    • /
    • 1999
  • We introduce several decompositons of generalized trans-formation semigroups and investigate some of their algebraic struc-tures.

ON WEAKLY GRADED POSETS OF ORDER-PRESERVING MAPS UNDER THE NATURAL PARTIAL ORDER

  • Jitjankarn, Phichet
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.347-358
    • /
    • 2020
  • In this paper, we simplify the natural partial ordering ≼ on the semigroup 𝒪([n]) under composition of all order-preserving maps on [n] = {1, …, n}, and describe its maximal elements. Also, we show that the poset (𝒪([n]), ≼) is weakly graded and determine when (𝒪([n]), ≼) has a structure of (i + 1)-avoidance.

A NOTE ON BITRANSFORMATION GROUPS

  • Song, Hyung Soo
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.227-232
    • /
    • 2006
  • We study some dynamical properties in the context of bitransformation groups, and show that if (H,X,T) is a bitransformation group such that (H,X) is almost periodic and (X/H,T) is pointwise almost periodic $T_2$ and $x{\in}X$, then $E_x=\{q{\in}E(H,X){\mid}qx{\in}{\overline{xT}\}$ is a compact $T_2$ topological group and $E_{qx}=E_x(q{\in}E(H,X))$ when H is abelian, where E(H,X) is the enveloping semigroup of the transformation group (H,X).

  • PDF

MAGNIFYING ELEMENTS IN A SEMIGROUP OF TRANSFORMATIONS PRESERVING EQUIVALENCE RELATION

  • Kaewnoi, Thananya;Petapirak, Montakarn;Chinram, Ronnason
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.269-277
    • /
    • 2019
  • Let X be a nonempty set, ${\rho}$ be an equivalence on X, T(X) be the semigroup of all transformations from X into itself, and $T_{\rho}(X)=\{f{\in}T(X)|(x,y){\in}{\rho}{\text{ implies }}((x)f,\;(y)f){\in}{\rho}\}$. In this paper, we investigate some necessary and sufficient conditions for elements in $T_{\rho}(X)$ to be left or right magnifying.

R-NOTION OF CONJUGACY IN PARTIAL TRANSFORMATION SEMIGROUP

  • Shah, Aftab Hussain;Parray, Mohd Rafiq
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.109-119
    • /
    • 2022
  • In this paper, we present a new definition of conjugacy that can be applied to an arbitrary semigroup and it does not reduce to the universal relation in semigroups with a zero. We compare the new notion of conjugacy with existing notions, characterize the conjugacy in subsemigroups of partial transformations through digraphs and restrictive partial homomorphisms.

Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide

  • Chinram, Ronnason
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.161-166
    • /
    • 2005
  • Let BQ be the class of all semigroups whose bi-ideals are quasi-ideals. It is known that regular semigroups, right [left] 0-simple semigroups and right [left] 0-simple semigroups belong to BQ. Every zero semigroup is clearly a member of this class. In this paper, we characterize when generalized full transformation semigroups and generalized Baer-Levi semigroups are in BQ in terms of the cardinalities of sets.

  • PDF

SEMIGROUPS OF TRANSFORMATIONS WITH INVARIANT SET

  • Honyam, Preeyanuch;Sanwong, Jintana
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.289-300
    • /
    • 2011
  • Let T(X) denote the semigroup (under composition) of transformations from X into itself. For a fixed nonempty subset Y of X, let S(X, Y) = {${\alpha}\;{\in}\;T(X)\;:\;Y\;{\alpha}\;{\subseteq}\;Y$}. Then S(X, Y) is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, we characterize when S(X, Y) is isomorphic to T(Z) for some set Z and prove that every semigroup A can be embedded in S($A^1$, A). Then we describe Green's relations for S(X, Y) and apply these results to obtain its group H-classes and ideals.

REGULARITY OF TRANSFORMATION SEMIGROUPS DEFINED BY A PARTITION

  • Purisang, Pattama;Rakbud, Jittisak
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.217-227
    • /
    • 2016
  • Let X be a nonempty set, and let $\mathfrak{F}=\{Y_i:i{\in}I\}$ be a family of nonempty subsets of X with the properties that $X={\bigcup}_{i{\in}I}Y_i$, and $Y_i{\cap}Y_j={\emptyset}$ for all $i,j{\in}I$ with $i{\neq}j$. Let ${\emptyset}{\neq}J{\subseteq}I$, and let $T^{(J)}_{\mathfrak{F}}(X)=\{{\alpha}{\in}T(X):{\forall}i{\in}I{\exists}_j{\in}J,Y_i{\alpha}{\subseteq}Y_j\}$. Then $T^{(J)}_{\mathfrak{F}}(X)$ is a subsemigroup of the semigroup $T(X,Y^{(J)})$ of functions on X having ranges contained in $Y^{(J)}$, where $Y^{(J)}:={\bigcup}_{i{\in}J}Y_i$. For each ${\alpha}{\in}T^{(J)}_{\mathfrak{F}}(X)$, let ${\chi}^{({\alpha})}:I{\rightarrow}J$ be defined by $i{\chi}^{({\alpha})}=j{\Leftrightarrow}Y_i{\alpha}{\subseteq}Y_j$. Next, we define two congruence relations ${\chi}$ and $\widetilde{\chi}$ on $T^{(J)}_{\mathfrak{F}}(X)$ as follows: $({\alpha},{\beta}){\in}{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}={\chi}^{({\beta})}$ and $({\alpha},{\beta}){\in}\widetilde{\chi}{\Leftrightarrow}{\chi}^{({\alpha})}{\mid}_J={\chi}^{({\alpha})}{\mid}_J$. We begin this paper by studying the regularity of the quotient semigroups $T^{(J)}_{\mathfrak{F}}(X)/{\chi}$ and $T^{(J)}_{\mathfrak{F}}(X)/{\widetilde{\chi}}$, and the semigroup $T^{(J)}_{\mathfrak{F}}(X)$. For each ${\alpha}{\in}T_{\mathfrak{F}}(X):=T^{(I)}_{\mathfrak{F}}(X)$, we see that the equivalence class [${\alpha}$] of ${\alpha}$ under ${\chi}$ is a subsemigroup of $T_{\mathfrak{F}}(X)$ if and only if ${\chi}^{({\alpha})}$ is an idempotent element in the full transformation semigroup T(I). Let $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ be the sets of functions in $T_{\mathfrak{F}}(X)$ such that ${\chi}^{({\alpha})}$ is injective, surjective and bijective respectively. We end this paper by investigating the regularity of the subsemigroups [${\alpha}$], $I_{\mathfrak{F}}(X)$, $S_{\mathfrak{F}}(X)$ and $B_{\mathfrak{F}}(X)$ of $T_{\mathfrak{F}}(X)$.

GENERATING SETS OF STRICTLY ORDER-PRESERVING TRANSFORMATION SEMIGROUPS ON A FINITE SET

  • Ayik, Hayrullah;Bugay, Leyla
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1055-1062
    • /
    • 2014
  • Let $O_n$ and $PO_n$ denote the order-preserving transformation and the partial order-preserving transformation semigroups on the set $X_n=\{1,{\ldots},n\}$, respectively. Then the strictly partial order-preserving transformation semigroup $SPO_n$ on the set $X_n$, under its natural order, is defined by $SPO_n=PO_n{\setminus}O_n$. In this paper we find necessary and sufficient conditions for any subset of SPO(n, r) to be a (minimal) generating set of SPO(n, r) for $2{\leq}r{\leq}n-1$.

GLOBALLY DETERMINED ALGEBRAS

  • Kang, Young-Yug
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.285-291
    • /
    • 1994
  • This paper is a contribution to the study of the isomorphism problems for algebras. Among the isomorphism problems, that of global determination is investigated here. That is, our investigation of the problems is concerned with the question whether two algebras are isomorphic when their globals are isomorphic. The answer is not always affirmative. The counterexample, due to E. M. Mogiljanskaja, is the class of all infinite semigroups. But T. Tamura and J. Shafer [6] proved that the class of all groups is globally determined and announced the same result for the class of rectangular bands. Vazenin [7] proved that for any set X, the transformation semigroup $T_{X}$ must be isomorphic to any semigroup S for any P(S)$\simeq$P($T_{X}/TEX>).(omitted)

  • PDF