• Title/Summary/Keyword: transfer length method

Search Result 372, Processing Time 0.027 seconds

A Study on Mixed Convection in Parallel Flat Plate with Heated Rectangular Block Arrays (발열체가 있는 평행평판공간내의 대류열전달에 관한 수치해석)

  • Jung, B.Y.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 1986
  • An analysis is made of the fully developed laminar flow and heat transfer in a parallel flat plate with heated rectangular block arrays to investigated the influence of bouyancy force. The shrouds is considered as adiabatic, while the heated block surface transmit a uniform rate of heat flux per unit axial length. The governing equations for velocity and temperature are solved by SIMPLE(Semi-Implicit Method Pressure Linked Equation) algorithm. Detailed velocity and temperature fields and overall heat transfer on wide range of Rayleigh number and various aspect ratios of heated rectangular blocks are computed. The result show that bouyancy leads to a significient enhancement in heat transfer along with a smaller increase in pressure drop, with the great enhancement found when the aspect ratio is 3.0.

  • PDF

Study on Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Heating Operating Condition (난방운전 조건하에서 $CO_2$ 열펌프용 내부 열교환기의 열전달 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.116-123
    • /
    • 2008
  • In order to study the heat transfer, effectiveness and pressure drop of an internal heat exchanger (IHX) for $CO_2$, heat pump under heating condition, the experiment and numerical analysis were performed. Four kinds of IHXs were used. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of IHX on the flow rate of refrigerant, the IHX length, the operating condition of a gas-cooler and an evaporator and the type of IHXs were investigated. With increasing the flow rate, the heat transfer rate increased about 25%. The heat transfer of the micro-channel tube was larger about 100% than that of the coaxial tube. With increasing the IHX length, the heat transfer rate decreased. The low-side pressure drop was larger compared with that of the high-side. And the pressure drop of the microchannel tube was larger about 100% than that of the coaxial tube. With increasing the high-side temperature and decreasing the low-side temperature, the heat transfer rate increased about 3%. From this study, we can see that new correlation on $CO_2$ heat transfer characteristics and tube type is necessary.

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly (핵연료 집합체 혼합날개형상의 수치최적설계)

  • Seo Jun-Woo;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.

Comparison of Track Recording with Surveying in Track irregularity Measurement (궤도틀림의 검측값과 측량결과 비교)

  • Lee, Jee-Ha;Choi, Ii-Yoon;Kim, Bak-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1090-1095
    • /
    • 2008
  • Track geometry changes by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, which determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from the characteristics of measuring device. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolley. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is EM-120, measures versine with 10m of symmetrical chord length.

  • PDF

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.

Numerical Analysis of Heat Transfer in Multichannel Volumetric Solar Receivers (다채널 체적식 태양열 흡수기에서 열전달 수치해석)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1383-1389
    • /
    • 2011
  • The current study focuses on the consistent analysis of heat transfer in multichannel volumetric solar receivers used for concentrating solar power. Changes in the properties of the absorbing material and channel dimensions are considered in an optical model based on the Monte Carlo ray-tracing method and in a one-dimensional heat transfer model that includes conduction, convection, and radiation. The optical model results show that most of the solar radiation energy is absorbed within a very small channel length of around 15 mm because of the large length-to-radius ratio. Classification of radiation losses reveals that at low absorptivity, increased reflection losses cause reduction of the receiver efficiency, notwithstanding the decrease in the emission loss. As the average temperature increases because of the large channel radius or small mass flow rate, both emission and reflection losses increase but the effect of emission losses prevails.

Flow Boiling Heat Transfer Characteristics of Liquid Nitrogen in Plain and Wire Coil Inserted Tubes (평활관 및 와이어코일을 삽입한 열전달촉진관에서 액체질소의 흐름비등열전달 특성)

  • Hwang Jee-Sang;Yun Rin;Kim Yongchan;Chung Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.927-933
    • /
    • 2005
  • Boiling heat transfer characteristics of liquid nitrogen in a stainless steel plain tube and wire coil inserted tubes were investigated. The test tubes, which had an inner diameter of 10.6 m and a length of 1.65 m, were horizontally located. Five wire coils having different pitch and thickness were inserted into the plain tube. The pitches of the wire coils were 18.4, 27.6, and 36.8 m, and the thickness was 1.5, 2.0, and 2.5 mm respectively. Tests were conducted at a saturation temperature of $-191^{\circ}$, mass fluxes from 58 to 105 kg/$m^2s$, and heat fluxes from 22.5 to 32.7 kw/$m^2$. A direct heating method was used to apply heat to the test section. The boiling heat transfer coefficients of liquid nitrogen were represented as a function of vapor quality, which showed significant drop at the dryout vapor quality. The maximum heat transfer enhancement using the wire coil inserted tubes over the plain tube was $174\%$ for 'Wire 3' having a thickness of 2.5 mm and a pitch of 18.4 mm.

Numerical Analysis on Plasma Characteristics of a DC Electric Arc Furnace (직류 전기 아크로에서의 플라즈마 특성에 관한 수치해석)

  • Lee J. H.;Han B. Y.;Kwak S. M.;Lee Y. W.;Kim C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.212-218
    • /
    • 2003
  • In order to analyze the heat transfer phenomena in the plasma flames, a mathematical model describing heat and fluid flow in an electric arc has been developed and used to predict heat transfer from the arc to the steel bath in a DC Electric Arc Furnace. The arc model takes the separate contributions to the heat transfer from each involved mechanism into account, i.e. radiation, convection and energy transported by electrons. The finite volume method and a SIMPLE algorithm are used for solving the governing MHD equations, i.e., conservation equations of mass, momentum, and energy together with the equations describing a $\kappa-\epsilon$ model for turbulence. The model predicts heat transfer for different currents and arc lengths. Finally these calculation results can be used as a useful insight into plasma phenomena of the industrial-scale electric arc furnace. From these results, it can be concluded that higher arc current and longer arc length give high heat transfer.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.