An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide

이산화탄소의 증발열전달 특성에 관한 실험적 연구

  • 조은석 (서울대학교 기계항공공학부) ;
  • 윤석호 (서울대학교 기계항공공학부) ;
  • 김민수 (서울대학교 기계항공공학부)
  • Published : 2002.01.01

Abstract

Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

Keywords

References

  1. Int. J. Refrigeration v.16 no.1 A new, efficient and environmentally benign system for car air-conditioning Lorentzen, G.;Pettersen, J. https://doi.org/10.1016/0140-7007(93)90014-Y
  2. HVAC&R Research v.4 no.3 Heat transfer from supercritical carbon dioxide in tube flow: A Critical Review Pitla, S. S.;Robinson, D. M.;Groll, E. A.;Ramadhyani, S. https://doi.org/10.1080/10789669.1998.10391405
  3. Korean Journal of Air-Cojnditioning and Refrigeration Engineering v.12 no.10 An experimental study on evaporative heat transfer characteristics in micro-Fin tubes before and after expansion process Jun, S. H.;Hwang, Y. W.;Yoon, S. H.;Kim, M. S.
  4. Int. J. Refrig. v.21 no.3 Development of compact heat exchangers for CO₂air-conditioning systems Pettersen, J.;Hafner, A.;Skaugen, G.;Rekstad, H. https://doi.org/10.1016/S0140-7007(98)00013-9
  5. NIST thermodynamic and transport properties of refrigerants and refrigerant mixtures database (REFPROP)(Version 6.0) McLinden, M. O.;Klein, S. A.;Lemmon, E. W.;Peskin, A. P.
  6. HVAC&R Research v.4 no.4 Heat transfer analysis of air-to-carbon dioxide two-phase heat absorption and supecritical heat rejection Robinson, D. M.;Groll, E. A. https://doi.org/10.1080/10789669.1998.10391409
  7. HVAC&R Research v.4 no.3 Theoretical evaluation of carbon dioxide refrigeration cycle Hwang, Y.;Radermacher, R. https://doi.org/10.1080/10789669.1998.10391403
  8. Proceedings, IIF-IIR Commission B1, with E1 & E2 Heat transfer and pressure drop for in-tube evaporation of CO₂ Bredesen, A. M.;Hafner, A.;Pettersen, J.;Neksa, P.;Aflekt, K.
  9. IEA HPC Report No. HPC-WR-19: CO₂Technology in Refrigeration, Heat Pump and Air Conditioning Systems Heat transfer coefficient for boilling carbon dioxide Knudsen, H. J. H.;Jensen, P. H.
  10. Trans. ASHRAE v.88 Chart correlation for saturated boiling heat transfer: Equations and further study Shah, M. M.
  11. Chem. Eng. Res. Des. v.65 Simplified general correlation for flow saturated boiling and comparisons of correlations with data Gungor, K. E.;Winterton, R. H. S.
  12. J. Heat Transfer v.112 A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes Kandlikar, S. G. https://doi.org/10.1115/1.2910348
  13. Int. J. Heat Mass Transfer v.34 no.11 A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation Liu, Z.;Winterton, R. H. S. https://doi.org/10.1016/0017-9310(91)90234-6
  14. J. Heat Transfer v.120 Flow boiling in horizontal tubes: Part 3-Development of a new heat transfer model based on flow pattern Kattan, N.;Thome, J. R.;Favrat, D. https://doi.org/10.1115/1.2830039
  15. Int. J. Heat Mass Transfer v.32 no.9 A study of flow boiling heat transfer with refrigerant mixtures Jung, D. S;McLinden, M.;Radermacher, R.;Didion, D. https://doi.org/10.1016/0017-9310(89)90057-4
  16. ANSI/ASME PTC 19.1 -1985 Measurement uncertainty
  17. Int. J. Heat Mass Transfer v.43 Evaporation heat transfer of R-32, R-134a, R-32/134a,and R-32/125/134a inside a horizontal smooth tube Choi, T. Y.;Kim, Y. J.;Kim, M. S.;Ro, S. T. https://doi.org/10.1016/S0017-9310(00)00005-3
  18. Trans. KSME(B) v.20 no.2 Experimental study on convective boiling heat transfer for pure refrigerants and refrigerant mixtures in a horizontal tube Shin, J. Y.;Kim, M. S.;Ro, S. T.
  19. Int. J. Heat and Fluid Flow v.19 An experimental study of in-tube evaporation of R22 inside a 6.5mm smooth tube Wang, C. C.;Chiang, C. S.;Yu, J. G. https://doi.org/10.1016/S0142-727X(98)00006-X
  20. Int. J. Heat Mass Transfer v.32 no.1 Horizontal flow boiling heat transfer experiments with a mixture R22/R114 Jung, D. S.;McLinden, M.;Radermacher, R.;Didion, D. https://doi.org/10.1016/0017-9310(89)90097-5