• Title/Summary/Keyword: transfer layer

Search Result 1,540, Processing Time 0.031 seconds

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

Suggestion and Design of GaN on Diamond Structure for an Ideal Heat Dissipation Effect and Evaluation of Heat Transfer Simulation as Different Adhesion Layer (이상적인 열방산 효과를 위한 GaN on Diamond 구조의 제안과 접합매개층 종류에 따른 열전달 시뮬레이션 비교)

  • Kim, Jong Cheol;Kim, Chan Il;Yang, Seung Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Current progress in the development of semiconductor technology in applications involving high electron mobility transistors (HEMT) and power devices is hindered by the lack of adequate ways todissipate heat generated during device operation. Concurrently, electronic devices that use gallium nitride (GaN) substrates do not perform well, because of the poor heat dissipation of the substrate. Suggested alternatives for overcoming these limitations include integration of high thermal conductivity material like diamond near the active device areas. This study will address a critical development in the art of GaN on diamond (GOD) structure by designing for ideal heat dissipation, in order to create apathway with the least thermal resistance and to improve the overall ease of integrating diamond heat spreaders into future electronic devices. This research has been carried out by means of heat transfer simulation, which has been successfully demonstrated by a finite-element method.

Ge thin layer transfer on Si substrate for the photovoltaic applications (Si 기판에서의 광소자 응용을 위한 Ge 박막의 Transfer 기술개발)

  • 안창근;조원주;임기주;오지훈;양종헌;백인복;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.743-746
    • /
    • 2003
  • We have successfully used hydrophobic direct-wafer bonding, along with H-induced layer splitting of Ge, to transfer 700nm think, single-crystal Ge films to Si substrates. Optical and electrical properties have been also observed on these samples. Triple-junction solar cell structures gown on these Ge/Si heterostructure templates show comparable photoluminescence intensity and minority carrier lifetime to a control structure grown on bulk Ge. When heavily doped p$^{+}$Ge/p$^{+}$Si wafer bonded heterostructures were bonded, ohmic interfacial properties with less than 0.3Ω$\textrm{cm}^2$ specific resistance were observed indicating low loss thermal emission and tunneling processes over and through the potential barrier. Current-voltage (I-V) characteristics in p$^{+}$Ge/pSi structures show rectifying properties for room temperature bonded structures. After annealing at 40$0^{\circ}C$, the potential barrier was reduced and the barrier height no longer blocks current flow under bias. From these observations, interfacial atomic bonding structures of hydrophobically wafer bonded Ge/Si heterostructures are suggested.ested.

  • PDF

Investigation into Development of Transfer Type for Variable Lamination Manufacturing Process and Apparatus (단속형 재료 공급식 가변 적층 쾌속조형공정 및 장치 개발에 관한 연구)

  • Yang, Dong-Yol;Ahn, Dong-Gyu;Lee, Sang-Ho;Choi, Hong-Seok;Park, Seung-Kyo;Chae, Hee-Chang
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.760-765
    • /
    • 2001
  • A new rapid prototyping process, as a transfer type of Variable Lamination Manufacturing by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost including the introduction and the maintenance and additional post-processing. The objective of this study is to propose a VLM-ST process and to develop an apparatus for implementation of the process. Design criteria of the apparatus were defined and the techniques were proposed to satisfy the design criterion. In order to examine the efficiency and applicability of the developed process, various three-dimensional shapes, such as a world-cup logo, a knob shape and a character, Son-o-kong, were fabricated on the apparatus in which unit shape layer (USL) was generated to build up each layer.

  • PDF

Film Cooling from Two Rows of Holes with Opposite Orientation Angles(I) -Configuration Effect- (반대방향의 방향각을 갖는 2열 분사구조의 막냉각 특성(I) -배열의 영향-)

  • Ahn, Joon;Jung, In-Sung;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1122-1130
    • /
    • 2001
  • Film cooling performance from two rows of holes with opposite orientation angles is evaluated in terms of heat flux ratio. The film cooling hole has a fixed inclination angle of 35°and orientation angle of 45°for the downstream row and -45°for the upstream row. Four film cooling hole arrangements including inline and staggered configurations are investigated. The blowing ratio studied was 1.0. Boundary layer temperature distributions are measured to investigate injectant behaviors and mixing characteristics. Detailed distributions of the adiabatic film cooling effectiveness and the heat transfer coefficient are measured using TLC(Thermochromic Liquid Crystal). For the inline configuration, there forms a downwash flow at the downstream hole exit to make the injectant well attach to the wall, which gives high adiabatic film cooling effectiveness and heat transfer coefficient. The evaluation of heat flux ratio shows that the inline configuration gives better film cooling performance with the help of the downwash flow at the downstream hole exits.

The Effect of Wake-Induced Periodic Unsteadiness on Heat Transfer in the Transitional Boundary Layer Around NACA0012 Airfoil (주기적인 통과후류가 NACA0012 익형 표면에서의 천이 경계층 열전달에 미치는 영향)

  • Jeong, Ha-Seung;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.645-652
    • /
    • 2001
  • Heat transfer data are presented which describe characteristics of the transitional thermal boundary layers on the NACA0012 airfoil with upstream wakes. The wakes are generated periodically by circular cylindrical rods which rotate around the airfoil like a squirrel cage. The unsteady wakes simulate those produced by the upstream rotating blade rows in axial turbomachines. The pressure or suction side of the airfoil is also simulated according to the rotating direction of circular rods. As the Reynolds number and the number of rotating rods increase, the boundary layer transition occurs earlier and the Nusselt number increases. The difference of heat transfer coefficient is less on the pressure side than on the suction side. At a constant Reynolds number, the Nusselt number is larger and smaller, respectively, before and after transition as the Strouhal number increases.

Thermal Instability and Heat Transfer Correlations of Laminar Flow over Isothermal Horizontal Flat Plate (등온 수평 평판 위를 지나는 층류유동 의 열적 불안전성 및 열전달 상관관계)

  • 박병완;유정열;최창균;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.613-620
    • /
    • 1985
  • An analysis on the thermal instability of horizontal Blasius flow in the form of longitudinal vortices has been carried out by introducing the 3-dimensional spatial dependence of the disturbance quantities. The stability problem has been simplified significantly by considering the limiting case of infinite Prandtl number and by skilfully replacing the boundary conditions at infinity with the interface conditions at the edge of the thermal boundary layer (or by simply confining the thermal disturbances in the thermal boundary layer). The advantage of this approach is that the critical values marking the onset of thermal instability can be readily obtained as solutions of the eigenvalues problems formulated by a 6*6(or a 5*5) determinant. Present analysis provides reasonable explanations on the existing experimental and theoretical data. Especially, the heat transfer correlation based on the present analysis agrees well with the existing experimental data.

Chemical Reactivity of N-Iodopyridinium Dichlorodate as a Lubricant Additive (潤滑添加劑로서의 N-Iodopyridinium Dichlorodate의 화학반응성)

  • Moon Tak Jin;Kwon Oh Seung
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.43-49
    • /
    • 1975
  • Small amounts of iodine compound in mineral oils are usually effective in reducing friction of metallic surfaces. Such improvement in frictional behaviour of wear characteristics was explained by the formation of a diiodide layer lattice structure at the metallic contact surfaces. The lubrication mechanism, however, by which organoiodine compounds functions is not based on the formation of such lattice structure iodide. It was tested and shown, by a static surface chemical reactivity test, wear and EP tests, and a hot wire method, that compound such as N-iodopyridinium dichlorodate, a double charge transfer complex, reacted with metals as an interhalogen compound and that the resultant thin film product reduced appreciable the friction of metallic surfaces, more than compounds such as methyl iodide, diiodomethane, and iodoform. These results suggest that the action of iodine, included in organoiodine compounds, is not that of a classical layer structure iodide, and an entirely new mechanism may be derived from a further studies on charge transfer complex compounds of organoiodine compounds.

  • PDF

Heat Transfer on a Jet Vane Surface Installed in a Rocket Nozzle (로켓노즐에 장착된 제트베인 표면의 열전달 특성)

  • Yu Man Sun;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • Jet vane is an useful component which is installed at the end of a nozzle for the purpose of the posture control and the secure controlling stability during the initial launching of a rocket. During several seconds from its initial launching moment, the JV driving part is heated due to the direct contact of the vane with the combusted gas and the vane is ablated mechanically or chemically. In this study, as the fundamental study for the thermal analysis of jet vane, the heat transfer into a jet vane which is located in the uniform supersonic flow field is calculated. For this, boundary layer integral method and finite difference method are used simultaneously. Based on the thermal boundary conditions derived from the analysis, the transient heat conduction in the vane is also calculated.

High Frequency (MHz) LLC Resonant Converter for a Capacitor Coupling Wireless Power Transfer (CCWPT) (커패시터 커플링 무선 전력 전송을 위한 MHz LLC 공진형 컨버터)

  • You, Young-Soo;Moon, HyunWon;Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2016
  • This paper proposes a high-frequency (MHz) LLC resonant converter for a capacitor coupling wireless power transfer (CCWPT). The CCWPT uses electric field in the coupling capacitor between the transmitter and receiver electrodes with a dielectric layer. Given that capacitance is very small and the impedance is large, transferring power with a simple series resonance is difficult. Therefore, the high frequency (MHz) and high Q factor LLC converter is proposed to reduce the impedance of the coupling capacitance and to obtain a high output voltage. This paper deals with the operation analysis of the proposed LLC converter and a theoretical capacitance estimation. The operation and features of the proposed CCWPT LLC converter is verified with a 4.2 W prototype for charging mobile devices.