• Title/Summary/Keyword: transfer function model

Search Result 934, Processing Time 0.027 seconds

Forecasting of Dissolved Oxygen at Kongju Station using a Transfer Function Noise Model (전이함수잡음모형에 의한 공주지점의 용존산소 예측)

  • 류병로;조정석;한양수
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.349-354
    • /
    • 1999
  • The transfer function was introduced to establish the prediction method for the DO concentration at the intaking point of Kongju Water Works System. In the mose cases we analyze a single time series without explicitly using information contained in the related time series. In many forecasting situations, other events will systematically influence the series to be forecasted(the dependent variables), and therefore, there is need to go beyond a univariate forecasting model. Thus, we must bulid a forecasting model that incorporates more than one time series and introduces explicitly the dynamic characteristics of the system. Such a model is called a multiple time series model or transfer function model. The purpose of this study is to develop the stochastic stream water quality model for the intaking station of Kongju city waterworks in Keum river system. The performance of the multiplicative ARIMA model and the transfer function noise model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the transfer function noise model lead to the improved accuracy.

  • PDF

A Short-term Forecasting of Water Supply Demands by the Transfer Function Model (Transfer Function 모형을 이용한 수도물 수요의 단기예측)

  • Lee, Jae-Joon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.88-103
    • /
    • 1996
  • The objective of this study is to develop stochastic and deterministic models which could be used to synthesize water application time series. Adaptive models using mulitivariate ARIMA(Transfer Function Model) are developed for daily urban water use forecasting. The model considers several variables on which water demands is dependent. The dynamic response of water demands to several factors(e.g. weekday, average temperature, minimum temperature, maximum temperature, humidity, cloudiness, rainfall) are characterized in the model by transfer functions. Daily water use data of Kumi city in 1992 are employed for model parameter estimation. Meteorological data of Seonsan station are utilized to input variables because Kumi has no records about the meteorological factor data.To determine the main factors influencing water use, autocorrelogram and cross correlogram analysis are performed. Through the identification, parameter estimation, and diagnostic checking of tentative model, final transfer function models by each month are established. The simulation output by transfer function models are compared to a historical data and shows the good agreement.

  • PDF

A Heat Release Model of Turbulent Premixed Flame Response to Acoustic Perturbations (유동 섭동에 의한 난류예혼합화염의 열발생 모델에 관한 연구)

  • Cho, Ju-Hyeong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.6
    • /
    • pp.413-420
    • /
    • 2008
  • The unsteady heat release characteristics play a significant role in combustion instabilities observed in low emissions gas turbine combustors. Such combustion instabilities are often caused by coupling mechanisms between unsteady heat release rates and acoustic perturbations. A generalized model of the turbulent flame response to acoustic perturbations is analytically formulated by considering a distributed heat release along a curved mean flame front and using the flame's kinematic model that incorporates the turbulent flame development. The effects of the development of flame speed on the flame transfer functions are examined by calculating the transfer functions with a constant or developing flame speed. The flame transfer function due to velocity fluctuation shows that, when a developing flame speed is used, the transfer function magnitude decreases faster with Strouhal number than the results with a constant flame speed at low Strouhal numbers. The flame transfer function due to mixture ratio fluctuation, however, exhibits the opposite results: the transfer function magnitude with a developing flame speed increases faster than that with a constant flame speed at low Strouhal numbers. Oscillatory behaviors of both transfer function magnitudes are shown to be damped when a developing flame speed is used. Both transfer functions also show similar behaviors in the phase characteristics: The phases of both transfer functions with a developing flame speed increase more rapidly than those with a constant flame speed.

Transfer Function Model Forecasting of Sea Surface Temperature at Yeosu in Korean Coastal Waters (전이함수모형에 의한 여수연안 표면수온 예측)

  • Seong, Ki-Tack;Choi, Yang-Ho;Koo, Jun-Ho;Lee, Mi-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.526-534
    • /
    • 2014
  • In this study, single-input transfer function model is applied to forecast monthly mean sea surface temperature(SST) in 2010 at Yeosu in Korean coastal waters. As input series, monthly mean air temperature series for ten years(2000-2009) at Yeosu in Korea is used, and Monthly mean SST at Yeosu station in Korean coastal waters is used as output series(the same period of input). To build transfer function model, first, input time series is prewhitened, and then cross-correlation functions between prewhitened input and output series are determined. The cross-correlation functions have just two significant values at time lag at 0 and 1. The lag between input and output series, the order of denominator and the order of numerator of transfer function, (b, r, s) are identified as (0, 1, 0). The selected transfer function model shows that there does not exist the lag between monthly mean air temperature and monthly mean SST, and that transfer function has a first-order autoregressive component for monthly mean SST, and that noise model was identified as $ARIMA(1,0,1)(2,0,0)_{12}$. The forecasted values by the selected transfer function model are generally $0.3-1.3^{\circ}C$ higher than actual SST in 2010 and have 6.4 % mean absolute percentage error(MAPE). The error is 2 % lower than MAPE by ARIMA model. This implies that transfer function model could be more available than ARIMA model in terms of forecasting performance of SST.

Combustion Instability modeling - 1D approach (연소불안정 모델링 - 1D 접근법 기반)

  • Kim, Daesik;Yoon, Myunggon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.65-67
    • /
    • 2017
  • Various combustion modeling approaches have been developed and verified in a combustion system such as rockets, gas turbines, and so on. This study introduces basic theory and recent research activities on 1D network model where a system is divided into a series of acoustic element and mass/momemtum/energy conservations are applied in the component. Each component is connected to the neighboring ones with proper jump conditions. Flame transfer function and acoustic transfer function are determined and effects of the each function on the system instability is investigated.

  • PDF

Statistical Analysis of Transfer Function Models with Conditional Heteroscedasticity

  • Baek, J.S.;Sohn, K.T.;Hwang, S.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2002
  • This article introduces transfer function model (TFM) with conditional heteroscedasticity where ARCH concept is built into the traditional TFM of Box and Jenkins (1976). Model building strategies such as identification, estimation and diagnostics of the model are discussed and are illustrated via empirical study including simulated data and real data as well. Comparisons with the classical TFM are also made.

Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank (TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석)

  • Cha, Hee-Bum;Yoon, Seong-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

Hydrologic Time Series Model by Transfer Function (대체함수에 의한 수문 시계열 모형)

  • 강관원;김주환
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.61-70
    • /
    • 1991
  • the relationships between rainfall and runoff are analyzed statistically and modelled using discrete linear transfer function, which can be shown with the relations between input and output in hydrologic system. The procedures of identification, estimation and diagnostic checking of model are proposed, and the suitabilith of assume model is determined by the statistics used in time series analysis.

  • PDF

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.