• 제목/요약/키워드: transcriptional analysis

검색결과 547건 처리시간 0.03초

Manila clam, Ruditapes philippinarum Cathepsin D: Molecular analysis and immune response against brown ring disease causing Vibrio tapetis challenge

  • Menike, Udeni;Ariyasiri, Krishan;Choi, Jin-Young;Lee, Youngdeuk;Wickramaarachchi, W.D.N.;Premachandra, H.K.A.;Lee, Jehee;De Zoysa, Mahanama
    • 한국패류학회지
    • /
    • 제29권2호
    • /
    • pp.155-161
    • /
    • 2013
  • Cathepsins are lysosomal/cysteine proteases belong to papain family (C1 family) that is involved in intracellular protein degradation, antigen processing, hormone maturation, and immune responses. In this study, member of cathepsin family was identified from Manila clam (Mc-Cathepsin D) and investigated the immune response against brown ring disease (BRD) causing Vibrio tapetis challenge. The identified Mc-Cathepsin D gene encodes characteristic features typical for the cathepsin family including eukaryotic and viral aspartyl protease signature domain and two highly conserved active sites ($^{84}VVFDTGSSNLWV^{95}$ and $^{270}IADTGTSLLAG^{281}$). Moreover, MC-Cathepsin D shows higher identity values (-50-70%) and conserved amino acids with known cathepsin D members. Transcriptional results (by quantitative real-time RT-PCR) showed that Mc-Cathepsin D was expressed at higher levels in gills and hemocytes than mantle, adductor muscle, foot, and siphon. After the V. tapetis challenge under laboratory conditions, Mc-Cathepsin D mRNA was up-regulated in gills and hemocytes. Present study indicates that Mc-Cathepsin D is constitutively expressed in different tissues and potentially inducible when infecting BRD by V. tapetis. It is further suggesting that Mc-Cathepsin D may be involved in multiple role including immune response reactions against BRD.

Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

  • Kim, Yong-Eun;Kim, Jong Ok;Park, Ki-Sun;Won, Minho;Kim, Kyoon Eon;Kim, Kee K.
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.625-630
    • /
    • 2016
  • The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-${\beta}1$ treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-${\beta}1$-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-${\beta}$-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song;Park, Ju-Yeon;Kang, Beom-Ryong;Lee, Sung-Hee;Cha, Jae-Soon;Kim, Young-Cheol
    • 식물병연구
    • /
    • 제17권2호
    • /
    • pp.111-120
    • /
    • 2011
  • A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.

Testis-specific transcripts in the chicken

  • Kim, Duk-Kyung
    • 한국가금학회:학술대회논문집
    • /
    • 한국가금학회 2005년도 제22차 정기총회 및 학술발표회
    • /
    • pp.53-59
    • /
    • 2005
  • 본 연구에서는 닭의 정소 및 정자에 대한 기능 유전체 연구를 위한 자원을 확보할 수 있도록 정소 특이적유전자로 예상되는 후보 염기서열을 분석하였다. TIGR Gallus gallus Gene Index 상의 데이터베이스에서 닭의 정소에서만 나타나는 것으로 공개된 EST 염기서열을 검색하여 나온 총 292개의 서열을 선택하였으며, 이와 같이 선별된 서열들에 대하여 닭의 정소와 난소를 포함한 다양한 조직에서 전사체의 발현을 검증하였다. 결과에서, 총 292개의 염기서열 중 110개가 정소 특이적인 발현을 나타내었다. Tentative consensus sequence (TC) 상에서 집합된 EST의 수와 정소 특이적으로 발현하는 TCs의 수 사이의 상관관계는 발견되지 않았다. Gene Ontology 데이터베이스 용어를 이용하여 분류한 결과에서는 정소특이적인 TC는 닭의 전체 TC를 분류한 것과 비교하면 catalytic activity (Molecular Functionbranch)의 카테고리에 많은 수의 TC가 포함된 것으로 나타났다. 본 연구의 결과는 닭의 정소 특이적 유전자에 대한 연구와 그 기능 분석을 보다 더욱 촉진시킬 수 있을 것이다.

  • PDF

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • 제31권1호
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Altered Gene Expression and Intracellular Changes of the Viable But Nonculturable State in Ralstonia solanacearum by Copper Treatment

  • Um, Hae Young;Kong, Hyun Gi;Lee, Hyoung Ju;Choi, Hye Kyung;Park, Eun Jin;Kim, Sun Tae;Murugiyan, Senthilkumar;Chung, Eunsook;Kang, Kyu Young;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.374-385
    • /
    • 2013
  • Environmental stresses induce several plant pathogenic bacteria into a viable but nonculturable (VBNC) state, but the basis for VBNC is largely uncharacterized. We investigated the physiology and morphology of the copper-induced VBNC state in the plant pathogen Ralstonia solanacearum in liquid microcosm. Supplementation of $200{\mu}M$ copper sulfate to the liquid microcosm completely suppressed bacterial colony formation on culture media; however, LIVE/DEAD BacLight bacterial viability staining showed that the bacterial cells maintained viability, and that the viable cells contain higher level of DNA. Based on electron microscopic observations, the bacterial cells in the VBNC state were unchanged in size, but heavily aggregated and surrounded by an unknown extracellular material. Cellular ribosome contents, however, were less, resulting in a reduction of the total RNA in VBNC cells. Proteome comparison and reverse transcription PCR analysis showed that the Dps protein production was up-regulated at the transcriptional level and that 2 catalases/peroxidases were present at lower level in VBNC cells. Cell aggregation and elevated levels of Dps protein are typical oxidative stress responses. $H_2O_2$ levels also increased in VBNC cells, which could result if catalase/peroxidase levels are reduced. Some of phenotypic changes in VBNC cells of R. solanacearum could be an oxidative stress response due to $H_2O_2$ accumulation. This report is the first of the distinct phenotypic changes in cells of R. solanacearum in the VBNC state.

Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

  • Kang, Dae-Sun;Min, Kyong-Jin;Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Plant Pathology Journal
    • /
    • 제33권3호
    • /
    • pp.264-275
    • /
    • 2017
  • The spent mushroom substrate (SMS) of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS) of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC) analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1), CaBGLU (${\beta}$-1,3-glucanase), CaPR-4 (PR protein 4), and CaPR-10 (PR protein 10) were significantly enhanced on WESMS and DL-${\beta}$-aminobutyric acid (BABA) treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.

Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L.

  • Nafis, Tazyeen;Akmal, Mohd.;Ram, Mauji;Alam, Pravej;Ahlawat, Seema;Mohd, Anis;Abdin, Malik Zainul
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.53-60
    • /
    • 2011
  • Artemisinin is effective against both chloroquine-resistant and -sensitive strains of Plasmodium species. However, the low yield of artemisinin from cultivated and wild plants is a serious limitation to the commercialization of this drug. Optimization of artemisinin yield either in vivo or in vitro is therefore highly desirable. To this end, we have overexpressed the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) gene (hmgr) from Catharanthus roseus L. in Artemisia annua L. and analyzed its influence on artemisinin content. PCR and Southern blot analyses revealed that the transgenic plants showed stable integration of the foreign hmgr gene. The reverse transcriptase-PCR results suggested that the hmgr was expressed at the transcriptional level in transgenic lines of Artemisia annua L., while the high-performance liquid chromatography analysis showed that artemisinin content was significantly increased in a number of the transgenic lines. Artemisinin content in one of the A. annua transgenic lines was 38.9% higher than that in non-transgenic plants, and HMGR enzyme activity in transgenic A. annua L. was also higher than that in the non-transgenic lines.

Effect of NaCl on Biofilm Formation of the Isolate from Staphylococcus aureus Outbreak Linked to Ham

  • Lee, Soomin;Choi, Kyoung-Hee;Yoon, Yohan
    • 한국축산식품학회지
    • /
    • 제34권2호
    • /
    • pp.257-261
    • /
    • 2014
  • The objective of this study was to evaluate the effects of NaCl on the biofilm formations of the isolate from Staphylococcus aureus outbreaks linked to ham. The S. aureus ATCC13565 isolated from ham was exposed to NaCl concentrations of 0%, 2%, 4%, and 6% supplemented in tryptic soy broth (TSB) for 24 h at $35^{\circ}C$, followed by plating 0.1 mL of the culture on tryptic soy agar containing 0%, 2%, 4%, and 6% NaCl, respectively. After incubating at $35^{\circ}C$ for 24 h, the colonies on the plates were collected and diluted to $OD_{600}$ = 0.1. The diluents of S. aureus were incubated on a 96-well flat bottom plate containing TSB plus the appropriate NaCl concentrations, and the biofilm formation was quantified by crystal violet staining after being incubated at $35^{\circ}C$ for 9 h. Confocal laser scanning microscope (CLSM) was also used for visualizing the biofilm formation of S. aureus at NaCl concentrations of 0%, 2%, 4%, and 6%. The transcriptional analysis of biofilm-related genes, such as icaA, atl, clfA, fnbA, sarA, and rbf, was conducted by quantitative real-time PCR. Crystal violet staining and CLSM showed that the biofilm formations of S. aureus increased (p<0.05) along with the NaCl concentrations. Moreover, the expression of the icaA genes was higher at the NaCl concentrations of 4% and 6% as compared with 0% of NaCl by approximately 9-folds and 20-folds, respectively. These results indicated that the NaCl formulated in processed food may increase the biofilm formations of S. aureus by increasing the icaA gene expressions.