DOI QR코드

DOI QR Code

Alternative Sigma Factor HrpL of Pectobacterium carotovorum 35 is Important for the Development of Soft-rot Symptoms

  • Nam, Hyo-Song (Bio Control Center, Jeonnam Bioindustry Foundation) ;
  • Park, Ju-Yeon (Institute of Environmentally-Friendly Agriculture, Chonnam National University) ;
  • Kang, Beom-Ryong (Jeonnam Agricultural Extension Service Center) ;
  • Lee, Sung-Hee (Chungbuk Agricultural Research and Extension Services) ;
  • Cha, Jae-Soon (Department of Agricultural Medicine, Choongbuk National University) ;
  • Kim, Young-Cheol (Institute of Environmentally-Friendly Agriculture, Chonnam National University)
  • Received : 2011.05.31
  • Accepted : 2011.07.16
  • Published : 2011.08.31

Abstract

A bacterial artificial chromosome library of Pectobacterium carotovorum 35 was constructed to characterize the genome and to sequence its hrp region. The hrp cluster of P. carotovorum 35 consisted of 26 open reading frames in five operons. A promoter-based green fluorescent protein technology was used to identify the genes regulated by the alternative sigma factor, HrpL, in P. carotovorum 35. The majority of the selected clones contained the hrpJ operon promoter sequence, which harbors a hrp box, but no putative hrp boxes were detected within the promoter sequences of two other hrpL-regulated genes encoding for pectate lyase and large repetitive protein. Although the promoters of five other hrp operons also contained hrp boxes, their expression was not HrpL-dependent in the promoter-based selection in E. coli. However, transcriptional analysis showed that expression from all operons harboring hrp boxes, except for the hrpN operon, was reduced significantly in the hrpL mutant. The severity of soft-rot symptoms when the hrpL mutant was applied to the surface of tobacco leaves, mimicking natural infection, was greatly attenuated. These results indicate that the hrpL gene of P. carotovorum 35 may be involved in the development of soft-rot symptoms.

Keywords

References

  1. Andro, T., Chambost, J.-P., Kotoujansky, A., Cattaneo, J., Bertheau, Y., Barras, F., Van Gijsegem, F. and Coleno, A. 1984. Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulose. J. Bacteriol. 160: 1199-1203.
  2. Antonarakis, S. E. 2001. BAC king up the promises. Nature Genet. 27: 230-232. https://doi.org/10.1038/85769
  3. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. 1989. Current Protocols in Molecular Biology, John Wiley and Sons, New York.
  4. Barras, F., Thurn, K. K. and Chatterjee, A. K. 1987. Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol. Gen. Genet. 209: 319-325. https://doi.org/10.1007/BF00329660
  5. Bell, K. S., Avrova, A. O., Holeva, M. C., Cardle, L., Morris, W., Jong, W. D., Toth, I. K., Waugh, B., Bryan, G. J. and Birch, P. R. J. 2002. Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with Escherichia coli. Microbiol. 148: 1367-1378. https://doi.org/10.1099/00221287-148-5-1367
  6. Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T. G., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher, L. J. C., Mungall, K., Atkin, R., Bason, N., Brooks, K., Chillingworth, T., Clark, K., Doggett, J., Fraser, A., Hance, Z., Hauser, H., Jagels, K., Moule, S., Norbertczak, H., Ormond, D., Price, C., Quail, M. A., Sanders, M., Walker, D., Whitehead, S., Salmond, G. P. C., Birch, P. R. J., Parkhill, J. and Toth, I. K. 2004. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA. 101: 11105-11110. https://doi.org/10.1073/pnas.0402424101
  7. Birnboim, H. C. and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523. https://doi.org/10.1093/nar/7.6.1513
  8. Chang, J. H., Urbach, J. M., Law, T. F., Arnold, L. W., Hu, A., Gombar, S., Grant, S. R., Ausubel, F. M. and Dangl, J. L. 2005. A high-throughput, near-saturating screen for type III effector genes from Pseudomonas syringae. Proc. Natl. Acad. Sci. USA. 102: 2549-2554. https://doi.org/10.1073/pnas.0409660102
  9. Chatterjee, A. K., Thurn, K. K. and Tyrell, D. J. 1985. Isolation and characterization of Tn5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-D-glycero- 2,5-hexodiulosonate dehydrogenase. J. Bacteriol. 162: 708-714.
  10. Chatterjee, A., Ciu, Y. and Chatterjee, A. K. 2002. Regulation of Erwinia carotovora hrpLEcc (sigma-LEcc), which encodes an extracytoplasmic function subfamily of sigma factor required for expression of the HRP regulon. Mol. Plant-Microbe Interact. 15: 971-980. https://doi.org/10.1094/MPMI.2002.15.9.971
  11. Collmer, A. and Keen, N. T. 1986. The role of the pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24: 383-409. https://doi.org/10.1146/annurev.py.24.090186.002123
  12. Del Sal, G., Manfioletti, G. and Schneider, C. 1989. The CTABDNA precipitation method: A common mini-scale preparation of template DNA from phagemids, phages or plasmids suitable for sequencing. BioTechniques 7: 514-520.
  13. Elhai, J. and Wolk, C. P. 1988. A versatile class of positive selection vectors based on the nonviability of palindrome containing plasmids that allows cloning into long polylinkers. Gene 68: 119-138. https://doi.org/10.1016/0378-1119(88)90605-1
  14. Fouts, D. E., Abramovitch, R. B., Alfano, J. R., Baldo, A. M., Buell, C. R., Cartinhour, S., Chatterjee, A. K., D'Ascenzo, M., Gwinn, M. L., Lazarowitz, S. G., Lin, N. C., Martin, G. B., Rehm, A. H., Schneider, D. J., van Dijk, K., Tang, X. Y. and Collmer, A. 2002. Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl. Acad. Sci. USA. 99: 2275-2280. https://doi.org/10.1073/pnas.032514099
  15. Frederick, R. D., Ahmad, M., Majerczak, D. R., Arroyo- Rodriguez, A. S., Manulis, S. and Coplin, D. L. 2001. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant-Microbe Interact. 14: 1213-1222. https://doi.org/10.1094/MPMI.2001.14.10.1213
  16. Glasner, J. D., Marquez-Villavicenco, M., Kim, H.-S., Jahn, C. E., Ma, B., Biehl, B. S., Rissman, A. I., Mole, B., Yi, X., Yang, C.-H., Dangl, J. L., Grant, S. R., Perna, N. T. and Charkowski, A. O. 2008. Niche-specificity and the variable fraction of the Pecotobacterium pan-genome. Mol. Plant-Microbe Interact. 21: 1549-1560. https://doi.org/10.1094/MPMI-21-12-1549
  17. Huynh, T. V., Dahlbeck, D. and Staskawicz, B. J. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374-1377. https://doi.org/10.1126/science.2781284
  18. Lehtimaki, S., Rantakari, A., Routtu, J., Tuikkala, A., Li, J., Virtaharju, O., Palva, E. T., Romantschuk, M. and Saarilahti, H. T. 2003. Characterization of the hrp pathogenicity cluster of Erwinia carotovora subsp. carotovora: high basal level expression in a mutant is associated with reduced virulence. Mol. Gen. Genom. 270: 263-272. https://doi.org/10.1007/s00438-003-0905-4
  19. Livak, J. K. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  20. Ma, Z., Weining, S., Sharp, P. J. and Liu, C. J. 2000. Non-gridded library: a new approach for bacterial artificial chromosome (BAC) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res. 2: e106.
  21. Miller, W. G., Leveau, J. H. J. and Lindow, S. E. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact. 13: 1243-1250. https://doi.org/10.1094/MPMI.2000.13.11.1243
  22. Murata, H., McEvoy, J. L., Chatterjee, A., Collmer, A. and Chatterjee, A. K. 1991. Molecular cloning of an aepA gene that activates production of extracellular pectolytic, cellulolytic, and proteolytic enzymes in Erwinia carotovora subsp. carotovora. Mol. Plant-Microbe Interact. 4: 239-246. https://doi.org/10.1094/MPMI-4-239
  23. Nissan, G., Manulis, S., Weinthal, D. M., Sessa, G. and Barash, I. 2005. Analysis of promoters recognized by HrpL, an alternative σ-factor protein from Pantoea agglomerans pv. gypsophilae. Mol. Plant-Microbe Interact. 18: 634-643. https://doi.org/10.1094/MPMI-18-0634
  24. Perombelon, M. C. M. and Salmond, G. P. C. 1995. Bacterial soft rots. In : Pathogenesis and Host Specificity in Plant Diseases, ed. by U. S. Singh, R. P. Singh and K. Kohmoto, Vol. 1, pp. 1-7, Oxford: Pergamon Press.
  25. Rantakari, A., Virtaharju, O., Vahamiko, S., Taira, S., Palva, E. T., Saarilahti, H. T. and Romantschuk, M. 2001. Type III secretion contributes to the pathogenesis of the soft-rot pathogen Erwinia carotovora: partial characterization of the hrp gene cluster. Mol. Plant-Microbe Interact. 14: 962-968. https://doi.org/10.1094/MPMI.2001.14.8.962
  26. Sambrook, J., Frithsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  27. Shi, X.-Y. and Cooksey, D. A. 2009. Identification of hrpL up-regulated genes of Dickeya dadantii. Eur. J. Plant Pathol. 124: 105-116. https://doi.org/10.1007/s10658-008-9397-8
  28. Shin, Y.-J. 2004. Biological control of soft rot of Chinese cabbage by a bacteriocin-producing avirulent mutant of Erwinia carotovora subsp. carotovora. MS thesis. Chungbuk National University.
  29. Wei, Z. M. and Beer, S. V. 1995. hrpL activites Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J. Bacteriol. 177: 6201-6210. https://doi.org/10.1128/jb.177.21.6201-6210.1995
  30. Wei, Z. M., Kim, J. F. and Beer, S. V. 2000. Regulation of hrp genes and type III protein secretion in Erwinia amylovora by HrpX/HrpY, a novel two-component system, and HrpS. Mol. Plant-Microbe Interact. 13: 1251-1262. https://doi.org/10.1094/MPMI.2000.13.11.1251
  31. Xiao, Y. and Hutcheson, S. W. 1994. A single promoter sequence recognized by newly identified alternative sigma factor direct expression of pathogenicity and host range determinants in Pseudomonas syringae. J. Bacteriol. 176: 3089-3091. https://doi.org/10.1128/jb.176.10.3089-3091.1994
  32. Yang, S., Perna, N. T., Cooksey, D. A., Okinaka, Y., Lindow, S. E., Ibekwe, A. M., Keen, N. T. and Yang, C.-H. 2004. Genome-wide identification of plant-upregulated genes of Erwinia chrysanthemi 3937 using a GFP-based IVET leaf array. Mol. Plant-Microbe Interact. 9: 999-1008.
  33. Zhang, H. B. and Wing, R. A. 1997. Physical mapping of the rice genome with BACs. Plant Mol. Biol. 35: 115-127. https://doi.org/10.1023/A:1005733909099