DOI QR코드

DOI QR Code

Transforming Growth Factor-β-Induced RBFOX3 Inhibition Promotes Epithelial-Mesenchymal Transition of Lung Cancer Cells

  • Kim, Yong-Eun (Department of Biochemistry, Chungnam National University) ;
  • Kim, Jong Ok (Department of Pathology, Daejeon Saint Mary's Hospital, The Catholic University of Korea) ;
  • Park, Ki-Sun (Department of Biochemistry, Chungnam National University) ;
  • Won, Minho (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Kim, Kyoon Eon (Department of Biochemistry, Chungnam National University) ;
  • Kim, Kee K. (Department of Biochemistry, Chungnam National University)
  • Received : 2016.06.16
  • Accepted : 2016.07.07
  • Published : 2016.08.31

Abstract

The RNA-binding protein Rbfox3 is a well-known splicing regulator that is used as a marker for post-mitotic neurons in various vertebrate species. Although recent studies indicate a variable expression of Rbfox3 in non-neuronal tissues, including lung tissue, its cellular function in lung cancer remains largely unknown. Here, we report that the number of RBFOX3-positive cells in tumorous lung tissue is lower than that in normal lung tissue. As the transforming growth factor-${\beta}$ (TGF-${\beta}$) signaling pathway is important in cancer progression, we investigated its role in RBFOX3 expression in A549 lung adenocarcinoma cells. TGF-${\beta}1$ treatment inhibited RBFOX3 expression at the transcriptional level. Further, RBFOX3 depletion led to a change in the expression levels of a subset of proteins related to epithelial-mesenchymal transition (EMT), such as E-cadherin and Claudin-1, during TGF-${\beta}1$-induced EMT. In immunofluorescence microscopic analysis, mesenchymal morphology was more prominent in RBFOX3-depleted cells than in control cells. These findings show that TGF-${\beta}$-induced RBFOX3 inhibition plays an important role in EMT and propose a novel role for RBFOX3 in cancer progression.

Keywords

References

  1. Amin, N., Allebrandt, K.V., van der Spek, A., Muller-Myhsok, B., Hek, K., Teder-Laving, M., Hayward, C., Esko, T., van Mill, J.G., Mbarek, H., et al. (2016). Genetic variants in RBFOX3 are associated with sleep latency. Eur J Hum Genet. doi: 10.1038/ejhg.2016.31. [Epub ahead of print]
  2. Arya, A.D., Wilson, D.I., Baralle, D., and Raponi, M. (2014). RBFOX2 protein domains and cellular activities. Biochem. Soc. Trans. 42, 1180-1183. https://doi.org/10.1042/BST20140050
  3. Braeutigam, C., Rago, L., Rolke, A., Waldmeier, L., Christofori, G., and Winter, J. (2014). The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene 33, 1082-1092. https://doi.org/10.1038/onc.2013.50
  4. Carreira-Rosario, A., Bhargava, V., Hillebrand, J., Kollipara, R.K., Ramaswami, M., and Buszczak, M. (2016). Repression of Pumilio Protein Expression by Rbfox1 Promotes Germ Cell Differentiation. Dev. Cell 36, 562-571. https://doi.org/10.1016/j.devcel.2016.02.010
  5. de Caestecker, M.P., Piek, E., and Roberts, A.B. (2000). Role of transforming growth factor-beta signaling in cancer. J. Natl. Cancer Inst. 92, 1388-1402. https://doi.org/10.1093/jnci/92.17.1388
  6. Glisovic, T., Bachorik, J.L., Yong, J., and Dreyfuss, G. (2008). RNAbinding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977-1986. https://doi.org/10.1016/j.febslet.2008.03.004
  7. Gold, L.I. (1999). The role for transforming growth factor-beta (TGF-beta) in human cancer. Crit. Rev. Oncog. 10, 303-360.
  8. Huber, M.A., Kraut, N., and Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr. Opin. Cell Biol. 17, 548-558. https://doi.org/10.1016/j.ceb.2005.08.001
  9. Jakowlew, S.B. (2006). Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev. 25, 435-457. https://doi.org/10.1007/s10555-006-9006-2
  10. Jin, Y., Suzuki, H., Maegawa, S., Endo, H., Sugano, S., Hashimoto, K., Yasuda, K., and Inoue, K. (2003). A vertebrate RNA-binding protein Fox-1 regulates tissue-specific splicing via the pentanucleotide GCAUG. EMBO J. 22, 905-912. https://doi.org/10.1093/emboj/cdg089
  11. Kim, K.K., Adelstein, R.S., and Kawamoto, S. (2009). Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J. Biol. Chem. 284, 31052-31061. https://doi.org/10.1074/jbc.M109.052969
  12. Kim, K.K., Kim, Y.C., Adelstein, R.S., and Kawamoto, S. (2011). Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic. Acids Res. 39, 3064-3078. https://doi.org/10.1093/nar/gkq1221
  13. Kim, K.K., Nam, J., Mukouyama, Y.S., and Kawamoto, S. (2013). Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J. Cell Biol. 200, 443-458. https://doi.org/10.1083/jcb.201206146
  14. Kim, K.K., Yang, Y., Zhu, J., Adelstein, R.S., and Kawamoto, S. (2014). Rbfox3 controls the biogenesis of a subset of microRNAs. Nat. Struct. Mol. Biol. 21, 901-910. https://doi.org/10.1038/nsmb.2892
  15. Kuroyanagi, H. (2009). Fox-1 family of RNA-binding proteins. Cell Mol. Life Sci. 66, 3895-3907. https://doi.org/10.1007/s00018-009-0120-5
  16. Lal, D., Reinthaler, E.M., Altmuller, J., Toliat, M.R., Thiele, H., Nurnberg, P., Lerche, H., Hahn, A., Moller, R.S., Muhle, H., et al. (2013). RBFOX1 and RBFOX3 mutations in rolandic epilepsy. PLoS One 8, e73323. https://doi.org/10.1371/journal.pone.0073323
  17. Langenfeld, E., Deen, M., Zachariah, E., and Langenfeld, J. (2013). Small molecule antagonist of the bone morphogenetic protein type I receptors suppresses growth and expression of Id1 and Id3 in lung cancer cells expressing Oct4 or nestin. Mol. Cancer 12, 129. https://doi.org/10.1186/1476-4598-12-129
  18. Lee, J.M., Dedhar, S., Kalluri, R., and Thompson, E.W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973-981. https://doi.org/10.1083/jcb.200601018
  19. Lee, J.A., Damianov, A., Lin, C.H., Fontes, M., Parikshak, N.N., Anderson, E.S., Geschwind, D.H., Black, D.L., and Martin, K.C. (2016). Cytoplasmic Rbfox1 regulates the expression of synaptic and autism-related genes. Neuron 89, 113-128. https://doi.org/10.1016/j.neuron.2015.11.025
  20. Massague, J., Seoane, J., and Wotton, D. (2005). Smad transcription factors. Genes Dev. 19, 2783-2810. https://doi.org/10.1101/gad.1350705
  21. Shapiro, I.M., Cheng, A.W., Flytzanis, N.C., Balsamo, M., Condeelis, J.S., Oktay, M.H., Burge, C.B., and Gertler, F.B. (2011). An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet. 7, e1002218. https://doi.org/10.1371/journal.pgen.1002218
  22. Shuangshoti, S., Mujananon, S., Chaipipat, M., Keetacheeva, K., and Shuangshoti, S. (2005). Expression of neuronal nuclear antigen (NeuN) in epithelial neuroendocrine carcinoma. Appl. Immunohistochem. Mol. Morphol. 13, 265-267. https://doi.org/10.1097/01.pai.0000137360.34201.21
  23. Tarin, D., Thompson, E.W., and Newgreen, D.F. (2005). The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65, 5996-6000; discussion 6000-5991. https://doi.org/10.1158/0008-5472.CAN-05-0699
  24. Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442-454. https://doi.org/10.1038/nrc822
  25. Tse, J.C., and Kalluri, R. (2007). Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J. Cell Biochem. 101, 816-829. https://doi.org/10.1002/jcb.21215
  26. Wang, H.Y., Hsieh, P.F., Huang, D.F., Chin, P.S., Chou, C.H., Tung, C.C., Chen, S.Y., Lee, L.J., Gau, S.S., and Huang, H.S. (2015). RBFOX3/neuN is required for hippocampal circuit balance and function. Sci. Rep. 5, 17383. https://doi.org/10.1038/srep17383
  27. Xu, J., Lamouille, S., and Derynck, R. (2009). TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156-172. https://doi.org/10.1038/cr.2009.5

Cited by

  1. BOK displays cell death-independent tumor suppressor activity in non-small-cell lung carcinoma vol.141, pp.10, 2017, https://doi.org/10.1002/ijc.30906
  2. The Long (lncRNA) and Short (miRNA) of It: TGFβ-Mediated Control of RNA-Binding Proteins and Noncoding RNAs vol.16, pp.4, 2016, https://doi.org/10.1158/1541-7786.mcr-17-0547
  3. RBFOX3 Regulates the Chemosensitivity of Cancer Cells to 5-Fluorouracil via the PI3K/AKT, EMT and Cytochrome-C/Caspase Pathways vol.46, pp.4, 2018, https://doi.org/10.1159/000489153
  4. RBM47-regulated alternative splicing of TJP1 promotes actin stress fiber assembly during epithelial-to-mesenchymal transition vol.38, pp.38, 2016, https://doi.org/10.1038/s41388-019-0892-5
  5. RBFOX3 Promotes Gastric Cancer Growth and Progression by Activating HTERT Signaling vol.10, pp.None, 2016, https://doi.org/10.3389/fonc.2020.01044
  6. Integrated Analysis of the Functions and Prognostic Values of RNA Binding Proteins in Lung Squamous Cell Carcinoma vol.11, pp.None, 2016, https://doi.org/10.3389/fgene.2020.00185
  7. Genetic variants in splicing factor genes and susceptibility to bladder cancer vol.809, pp.None, 2016, https://doi.org/10.1016/j.gene.2021.146022