• Title/Summary/Keyword: transcriptional analysis

Search Result 547, Processing Time 0.017 seconds

Post-transcriptional Regulation of NK Cell Activation

  • Kim, Tae-Don;Park, Ju-Yeong;Choi, In-Pyo
    • IMMUNE NETWORK
    • /
    • v.9 no.4
    • /
    • pp.115-121
    • /
    • 2009
  • Natural killer (NK) cells play key roles in innate and adaptive immune defenses. NK cell responses are mediated by two major mechanisms: the direct cytolysis of target cells, and immune regulation by production of various cytokines. Many previous reports show that the complex NK cell activation process requires de novo gene expression regulated at both transcriptional and post-transcriptional levels. Specialized un-translated regions (UTR) of mRNAs are the main mechanisms of post-transcriptional regulation. Analysis of posttranscriptional regulation is needed to clearly understand NK cell biology and, furthermore, harness the power of NK cells for therapeutic aims. This review summarizes the current understanding of mRNA metabolism during NK cell activation, focusing primarily on post-transcriptional regulation.

Functional Analysis of the Heptasequence SPTSPTY in the Transcriptional Activation Domain of Rat Nuclear Factor 1-A

  • Hwang, Jung-Su;Son, Kyung-No;Rho, Hyune-Mo;Kim, Ji-Young
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.468-473
    • /
    • 1999
  • Nuclear Factor 1 (NF1) proteins are a family of transcriptional factors consisting of four different types: NF1-A, -B, -C, and -X. Some NF1 transcription factors contain a heptasequence motif, SPTSPSY, which is found as a repeat sequence in the carboxy terminal domain (CTD) of the largest subunit of RNA polymerase II. A similar heptasequence, SPTSPTY, is contained in rat liver NF1-A at a position between residues 469 and 475. In order to investigate the roles of the individual amino acids of the heptasequence of rat liver NF1-A in transcriptional activation, we systematically substituted single and multiple amino acid residues with alanine residue(s) and evaluated the transcriptional activities of the mutated NF1-A. Substitution of a single amino acid reduced transcriptional activity by 10 to 30%, except for the proline residue at position 473, whose substitution with alanine did not affect transcriptional activity. However, changes of all four serine and threonine residues to alanine or of the tyrosine residue along with the serine residue at position 469 to alanine reduced the activity to almost background levels. Our results indicate that multiple serine and threonine residues, rather than a single residue, may be involved in the modulation of the transcriptional activities of the factor. Involvement of the tyrosine residue is also implicated.

  • PDF

Current Progress in the Analysis of Transcriptional Regulation in the Industrially Valuable Microorganism Aspergillus oryzae

  • Nakajima, Keiichi;Sano, Motoaki;Machida, Masayuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.4
    • /
    • pp.253-262
    • /
    • 2000
  • Aspergillus is considered to be an attractive host for heterologous protein production because of its safety and ability to secrete large amounts of proteins. In order to obtain high productivity, thus far promoters of amylases have been most widely used in A. oryzae. Recent progress in cloning and expression analysis, including EST sequencing, revealed that glycolytic genes represent some of those most strongly expressed in A. oryzae. Therefore, promoters of glycolytic genes could be important alternatives to promoters of amylases because lower amounts of proteases are produced in the presence of glucose. Several A. oryzae transcription factors responsible for the induction and/or maximum expression of many industrially important genes encoding amylases and proteases have been cloned and characterized. In addition to the transcriptional regulatory factors, the gene encoding the largest subunit of RNa polymerase II, constituting the basic transcription machinery, has also been cloned from A. oryzae. This recently acquired understanding of the details of transcriptional regulatory mechanisms and factors will facilitate engineering flexible controls for the expression of proteins important for the fermentation industries.

  • PDF

DNA Chip을 이용한 Transcriptional Activation Mechanism 분석

  • 김영준
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.45-60
    • /
    • 2001
  • . Mediator of transcriptional regulation is the evolutionary conserved coactivator complex that plays He central role in the integration and recruitment of diverse regulatory signals and transcription machinery to certain promoters. In yeast, each Mediator subunit is required for transcriptional regulation of a distinct group of genes. In order to decipher the mechanistic roles of Mediator proteins in regulating developmental specific gene expression, we isolated, and analyzed a multiprotein complex containing Drosophila Mediate. homologs (dMediato.). dMediato. interacts with several sequence-sperific transcription factors and basal transcription machinery, and is critical for activated transcription in response to diverse transcriptional activators. In order to elucidate the function of Mediator in metazoan development, we isolated mutants of a conserved Mediate. subunit, Drosophila Med6 (dMed6). dMed6 null homozygotes failed to pupate and died in the third larval instar. Larval mitotic cells and most imaginal discs showed severe defects in proliferation, but no apparent morphological defect was observed in other larval tissues. Clonal analysis of dMed6 mutant cells revealed that dMed6 is essential for cell viability and proliferation of most adult cell types. Drosophila cDNA microarray, quantitative RT-PCR, and in situ expression analyses of developmentally regulated genes in dMed6 mutants showed that transcriptional activation of a subset of genes involved in neuroblast proliferation in the larval brain were most affected. Our results suggest that dMed6 is required in most for transcriptional regulation of a subset of genes important for cell proliferation and metabolism.

  • PDF

Molecular Analysis of Promoter and Intergenic Region Attenuator of the Vibrio vulnificus prx1ahpF Operon

  • Lee, Hyun Sung;Lim, Jong Gyu;Han, Kook;Lee, Younghoon;Choi, Sang Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1380-1389
    • /
    • 2015
  • Prx1, an AhpF-dependent 2-Cys peroxiredoxin (Prx), was previously identified in Vibrio vulnificus, a facultative aerobic pathogen. In the present study, transcription of the V. vulnificus prx1ahpF genes, which are adjacently located on the chromosome, was evaluated by analyzing the promoter and intergenic region of the two genes. Northern blot analyses revealed that transcription of prx1ahpF results in two transcripts, the prx1 and prx1ahpF transcripts. Primer extension analysis and a point mutational analysis of the promoter region showed that the two transcripts are generated from a single promoter. In addition, the 3' end of the prx1 transcript at the prx1ahpF intergenic region was determined by a 3'RACE assay. These results suggested that the prx1ahpF genes are transcribed as an operon, and the prx1 transcript was produced by transcriptional termination in the intergenic region. RNA secondary structure prediction of the prx1ahpF intergenic region singled out a stem-loop structure without poly(U) tract, and a deletion analysis of the intergenic region showed that the atypical stem-loop structure acts as the transcriptional attenuator to result in the prx1 and prx1ahpF transcripts. The combined results demonstrate that the differential expression of prx1 and ahpF is accomplished by the cis-acting transcriptional attenuator located between the two genes and thereby leads to the production of a high level of Prx1 and a low level of AhpF.

The Role of High-throughput Transcriptome Analysis in Metabolic Engineering

  • Jewett, Michael C.;Oliveira, Ana Paula;Patil, Kiran Raosaheb;Nielsen, Jens
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.385-399
    • /
    • 2005
  • The phenotypic response of a cell results from a well orchestrated web of complex interactions which propagate from the genetic architecture through the metabolic flux network. To rationally design cell factories which carry out specific functional objectives by controlling this hierarchical system is a challenge. Transcriptome analysis, the most mature high-throughput measurement technology, has been readily applied In strain improvement programs in an attempt to Identify genes involved in expressing a given phenotype. Unfortunately, while differentially expressed genes may provide targets for metabolic engineering, phenotypic responses are often not directly linked to transcriptional patterns, This limits the application of genome-wide transcriptional analysis for the design of cell factories. However, improved tools for integrating transcriptional data with other high-throughput measurements and known biological interactions are emerging. These tools hold significant promise for providing the framework to comprehensively dissect the regulatory mechanisms that identify the cellular control mechanisms and lead to more effective strategies to rewire the cellular control elements for metabolic engineering.

Some Motifs Were Important for Myostatin Transcriptional Regulation in Sheep (Ovis aries)

  • Du, Rong;An, Xiao-Rong;Chen, Yong-Fu;Qin, Jian
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.547-553
    • /
    • 2007
  • Many motifs along the 1.2 kb myostatin promoter (MSTNpro) in sheep have been found by the MatInspecter program in our recent study. To further verify the role of the motifs and better understand the transcriptional regulation mechanism of the myostatin gene in sheep, the reporter gene EGFP (enhanced green fluorescent protein) was selected and the wild-type (W) vector MSTNPro$^W$-EGFP or motif-mutational (M) vector MSTNPro$^M$-EGFP were constructed. The transcriptional regulation activities were analyzed by detecting the fluorescence strength of EGFP in C2C12 myoblasts transfected with the vectors. The results showed that E-box (E) 3, E4, E5 and E7, particularly E3, E5 and E7, had important effects on the activity of the 1.2 kb sheep myostatin promoter. In addition, we also detected several other important motifs such as MTBF (muscle-specific Mt binding factor), MEF2 (myocyte enhancer factor 2), GRE (glucocorticoid response elements) and PRE (progesterone response elements) along the sheep myostatin promoter by the mutational analysis.

Identification and Characterization of LHX8 DNA Binding Elements

  • Park, Miree;Jeon, Sanghyun;Jeong, Ji-Hye;Park, Miseon;Lee, Dong-Ryul;Yoon, Tae Ki;Choi, Dong Hee;Choi, Youngsok
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.379-384
    • /
    • 2012
  • Lhx8 (LIM homeobox 8) gene encodes a LIM homeodomain transcriptional regulator that is preferentially expressed in germ cells and critical for mammalian folliculogenesis. However, Lhx8 DNA binding sequences are not characterized yet. We aimed to identify and characterize a cis-acting sequence of germ-cell specific transcriptional factor, Lhx8. To identify Lhx8 DNA binding element, Cyclic Amplification of Sequence Target (CAST) Analysis was performed. Electrophoretic Mobility Shift Assay (EMSA) was processed for the binding specificity of Lhx8. Luciferase assay was for the transcriptional activity of Lhx8 through identified DNA binding site. We identified a putative cis-acting sequence, TGATTG as Lhx8 DNA binding element (LBE). In addition, Lhx8 binds to the LBE with high affinity and augments transcriptional activity of luciferase reporter driven by artificial promoter containing the Lhx8 binding element. These findings indicate that Lhx8 directly regulates the transcription of genes containing Lhx8 binding element in oocytes during early folliculogenesis.

Transcriptional Features of the Chromosomal Region Located between the sigH and rplA Genes of Bacillus subtilis

  • Jeong, Sang-Min
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.168-172
    • /
    • 2006
  • In this study. the transcriptional features of a 2.8 kb region spanning the sigH and rplA genes of Bacillus subtilis were clarified using synthetic oligonucleotides complementary to the transcripts of the rpmG, secE, nusG, and rplK genes. The 5' ends of three transcripts corresponding to this region were located and mapped on the chromosome via primer extension analysis. Three regions, designated Prg, Pn, and Prk, which partially share the consensus sequence recognized by ${\sigma}^A$ RNA polymerase, were theorized to function as promoter elements. The rpmG and secE genes of B. subtilis were cotranscribed from the designated prg promoter, whereas the nusG and rplK genes were transcribed separately from the Pn and Prk promoters, respectively. Accordingly, the transcriptional features, as well as the gene organization, of the region encompassing the sigH and rplA genes of B. subtilis, including the rpmG-secE-nusG-rplK genes, were determined to be distinct from those of Escherichia coli. Divergences in terms of gene organization and transcriptional features within the relevant region would serve as excellent criteria for the delineation of phylogenetic relationships among bacteria.

Identification of the σ70-Dependent Promoter Controlling Expression of the ansPAB Operon of the Nitrogen-Fixing Bacterium Rhizobium etli

  • Angelica, Moreno-Enriquez;Zahaed, Evangelista-Martinez;Luis, Servin-Gonzalez;Maria Elena, Flores-Carrasco
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1241-1245
    • /
    • 2015
  • The aim of the present work was to examine the putative promoter region of the operon ansPAB and to determine the general elements required for the regulation of transcriptional activity. The transcriptional start site of the ansPAB promoter was determined by using highresolution S1-nuclease mapping. Sequence analysis of this region showed -10 and -35 elements, which were consistent with consensus sequences for R. etli promoters that are recognized by the major form of RNA polymerase containing the σ70 transcription factor. Mutation studies affecting several regions located upstream of the transcriptional start site confirmed the importance of these elements on transcriptional expression.