Current Progress in the Analysis of Transcriptional Regulation in the Industrially Valuable Microorganism Aspergillus oryzae

  • Nakajima, Keiichi (Molecular Biology Department, National Institute of Bioscience and Human-Technology) ;
  • Sano, Motoaki (Molecular Biology Department, National Institute of Bioscience and Human-Technology) ;
  • Machida, Masayuki (Molecular Biology Department, National Institute of Bioscience and Human-Technology)
  • Published : 2000.07.01

Abstract

Aspergillus is considered to be an attractive host for heterologous protein production because of its safety and ability to secrete large amounts of proteins. In order to obtain high productivity, thus far promoters of amylases have been most widely used in A. oryzae. Recent progress in cloning and expression analysis, including EST sequencing, revealed that glycolytic genes represent some of those most strongly expressed in A. oryzae. Therefore, promoters of glycolytic genes could be important alternatives to promoters of amylases because lower amounts of proteases are produced in the presence of glucose. Several A. oryzae transcription factors responsible for the induction and/or maximum expression of many industrially important genes encoding amylases and proteases have been cloned and characterized. In addition to the transcriptional regulatory factors, the gene encoding the largest subunit of RNa polymerase II, constituting the basic transcription machinery, has also been cloned from A. oryzae. This recently acquired understanding of the details of transcriptional regulatory mechanisms and factors will facilitate engineering flexible controls for the expression of proteins important for the fermentation industries.

Keywords

References

  1. Appl. Microbiol. Biotechnol. v.43 Molecular genetic strain improvement for the overproduction of fungal proteins by Filamentous fungi. Verdoes, J. C.;P. J. Punt;C. A. van den Hondel
  2. Bio-Technology v.6 High level expression of recombinant genes in Aspergillus oryzae. Christensen, T.;H. Woeldike;E. Boel;S. B. Mortensen;K. Hjortshoej;L. Thim;M. T. Hansen
  3. Lipids v.24 Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Huge-Jensen, B.;F. Andreasen;T. Christensen;M. Christensen;L. Thim;E. Boel
  4. Agric. Biol. Chem. v.54 Expression and secretion of thaumatin from Aspergillus oryzae. Hahm, Y. T.;C. A. Batt
  5. Biotechnology v.10 Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Ward, P. P.;J. Y. Lo;M. Duke;G. S. May;D. R. Headon;O. M. Conneely
  6. Appl. Microbiol. Biotechnol. v.40 Secretion of calf chymosin from the filamentous fungus Aspergillus oryzae. Tsuchiya, K.;K. Gomi;K. Kitamoto;C. Kumagai;G. Tamura
  7. Appl. Microbiol. Biotechnol. v.38 High level expression of the synthetic human lysozyme gene in Aspergillus oryzae. Tsuchiya, K.;S. Tada;K. Gomi;K. Kitamoto;C. Kumagai;Y. Jigmi;G. Tamura
  8. Appl. Microbiol. Biotechnol. v.50 Improvement of promoter activity by the introduction of multiple copies of the conserved region III sequence, involved in the efficient expression of Aspergillus oryzae amylase-encoding genes. Minetoki, T.;C. Kumagai;K. Gomi;K. Kitamoto;K. Takahashi
  9. Mol. Gen. Genet. v.234 Characterization of the Aspergillus niger pelB gene: structure and regulation of expression. Kusters-van Someren, M.;M. Flipphi;L. de Graaff;H. van den Broeck;H. Kester;A. Hinnen;J. Visser
  10. J. Biotechnol. v.17 Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. Punt, P. J.;N. D. Zegers;M. Busscher;P. H. Pouwels;C. A. van den Hondel
  11. Biosci. Biotechnol. Biochem. v.59 Characteristic expression of three amylase-encoding genes, agdA, amyB, and glaA in Aspergillus oryzae transformants containing multiple copies of the agdA gene. Minetoki, T.;K. Gomi;K. Kitamoto;C. Kumagai;G. Tamura
  12. Curr. Genet. v.30 Deletion analysis of promoter elements of the Aspergillus oryzae agdA gene encoding α-glucosidase. Minetoki, T.;Y. Nunokawa;K. Gomi;K. Kitamoto;C. Kumagai;G. Tamura
  13. Curr. Genet. v.22 Functional elements of the promoter region of the Aspergillus oryzae glaA gene encoding glucoamylase. Hata, Y.;K. Kitamoto;K. Gomi;C. Kumagai;G. Tamura
  14. Biosci. Biotechnol. Biochem. v.56 Deletion analysis of the Takaamylase A gene promoter using a homologous transformation system in Aspergillus oryzae. Tsuchiya, K.;S. Tada;K. Gomi;K. Kitamoto;C. Kumagai;G. Tamura
  15. Biosci. Biotechnol. Biochem. v.64 Molecular cloning and characterization of a transcriptional activator gene, amyR, involved in the amylolytic gene expression in Aspergillus oryzae. Gomi, K.;T. Akeno;T. Minetoki;K. Ozeki;C. Kumagai;N. Okazaki;Y. Iimura
  16. Biosci. Biotechnol. Biochem. v.60 Sequencespecific binding sites in the Taka-amylase A G2 promoter for the CreA repressor mediating carbon catabolite repression. Kato, M.;K. Sekine;N. Tsukagoshi
  17. Mol. Gen. Genet. v.237 Aspergillus nidulans nuclear proteins bind to a CCAAT element and the adjacent upstream sequence in the promoter region of the starch-inducible Takaamylase A gene. Nagata, O.;T. Takashima;M. Tanaka;N. Tsukagoshi
  18. Mol. Gen. Genet. v.254 An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Kato, M.;A. Aoyama;F. Naruse;T. Kobayashi;N. Tsukagoshi
  19. Applied molecular genetics of filamentous fungi., Kinghorn, J. R.;G. Turner
  20. Appl. Microbiol. Biotechnol. v.44 Cloning, characterization and overproduction of nuclease S1 gene (nucS) from Aspergillus oryzae. Lee, B. R.;K. Kitamoto;O. Yamada;C. Kumagai
  21. Biosci. Biotechnol. Biochem. v.58 High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Tsuchiya, K.;T. Nagashima;Y. Yamamoto;K. Gomi;K. Kitamoto;C. Kumagai;G. Tamura
  22. Curr. Genet. v.30 Molecular cloning of a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Machida, M.;Y. C. Chang;M. Manabe;M. Yasukawa;S. Kunihiro;Y. Jigami
  23. Mol. Gen. Genet. v.229 Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli α-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Tada, S.;K. Gomi;K. Kitamoto;K. Takahashi;G. Tamura;S. Hara
  24. Curr. Genet. v.37 Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Nakajima, K.;S. Kunihiro;M. Sano;Y. Zhang;S. Eto;Y. C. Chang;T. Suzuki;Y. Jigami;M. Machida
  25. Biotechnol. Lett. v.21 Cloning and nucleotide sequence of one of the most highly expressed genes, a pdcA homolog of Aspergillus nidulans, in Aspergillus oryzae. Lee, D. W.;J. S. Koh;J. H. Kim;K. S. Chae
  26. Gene v.136 Isolation Trichoderma reesei genes highly expressed on glucosecontaining media: characterization of the tef1 gene encoding translation elongation factor 1 alpha. Nakari, T.;E. Alatalo;M. E. Penttila
  27. J. Biol. Chem. v.256 The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. Clifton, D.;D. G. Fraenkel
  28. Mol. Cell. Biol. v.7 The GCR1 gene encodes a positive transcriptional regulator of the enolase and glyceraldehyde- 3-phosphate dehydrogenase gene families in Saccharomyces cerevisiae. Holland, M. J.;T. Yokoi;J. P. Holland;K. Myambo;M. A. Innis
  29. Mol. Cell. Biol. v.6 Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Baker, H. V.
  30. Mol. Cell. Biol. v.10 gcr2, a new mutation affecting glycolytic gene expression in Saccharomyces cerevisiae. Uemura, H.;D. G. Fraenkel
  31. Mol. Cell. Biol. v.12 Role of GCR2 in transcriptional activation of yeast glycolytic genes. Uemura, H.;Y. Jigami
  32. Cell v.51 Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Shore, D.;K. Nasmyth
  33. EMBO J. v.4 A general upstream binding factor for genes of the yeast translational apparatus. Huet, J.;P. Cottrelle;M. Cool;M. L. Vignais;D. Thiele;C. Marck;J. M. Buhler;A. Sentenac;P. Fromageot
  34. Mol. Cell. Biol. v.8 Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Buchman, A. R.;W. J. Kimmerly;J. Rine;R. D. Kornberg
  35. Mol. Cell. Biol. v.10 Multiple factors bind the upstream activation sites of the yeast enolase genes ENO1 and ENO2: ABFI protein, like repressor activator protein RAP1, binds cis-acting sequences which modulate repression or activation of transcription. Brindle, P. K.;J. P. Holland;C. E. Willett;M. A. Innis;M. J. Holland
  36. Nucleic Acids Res. v.18 Charac-terization of TPI gene expression in isogeneic wild-type and gcr1- deletion mutant strains of Saccharomyces cerevisiae. Scott, E. W.;H. E. Allison;H. V. Baker
  37. Mol. Cell. Biol. v.9 Identification of an upstream activating sequence and an upstream repressible sequence of the pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Nishizawa, M.;R. Araki;Y. Teranishi
  38. Nucleic Acids Res. v.18 ARS binding factor 1 binds adjacent to RAP1 at the UASs of the yeast glycolytic genes PGK and PYK1. Chambers, A.;C. Stanway;J. S. Tsang;Y. Henry;A. J.Kingsman;S. M. Kingsman
  39. Mol. Gen. Genet. v.231 A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehy-drogenase gene promoter. Bitter, G. A.;K. K. Chang;K. M. Egan
  40. Mol. Cell. Biol. v.13 Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the high-level expression of the glycolytic gene TPI. Scott, E. W.;H. V. Baker
  41. Nucleic Acids Res. v.22 A simple in vivo footprinting method to examine DNA-protein interactions over the yeast PYK UAS element. Dumitru, I.;J. B. McNeil
  42. Mol. Gen. Genet. v.245 The yeast protein Gcr1p binds to the PGK UAS and contributes to the activation of transcription of the PGK gene. Henry, Y. A.;M. C. Lopez;J. M. Gibbs;A. Chambers;S. M. Kingsman;H. V. Baker;C. A. Stanway
  43. Biosci. Biotechnol. Biochem. v.60 Molecular cloning of a genomic DNA for enolase from Aspergillus oryzae. Machida, M.;T. V. Gonzalez;L. K. Boon;K. Gomi;Y. Jigami
  44. Gene v.163 Cloning and characterization of three Aspergillus niger promoters. Luo, X.
  45. Gene v.69 Isolation and characterization of the glyceraldehyde-3-phosphate dehydrogenase gene of Aspergillus nidulans. Punt, P. J.;M. A. Dingemanse;B. J. Jacobs-Meijsing;P. H. Pouwels;C. A. van den Hondel
  46. Gene v.93 Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3- phosphate dehydrogenase. Punt, P. J.;M. A. Dingemanse;A. Kuyvenhoven;R. D. Soede;P. H. Pouwels;C. A. van den Hondel
  47. Gene v.120 An upstream activating sequence from the Aspergillus nidulans gpdA gene. Punt, P. J.;C. Kramer;A. Kuyvenhoven;P. H. Pouwels;C. A. van den Hondel
  48. Gene v.158 A mini-promoter lacZ gene fusion for the analysis of fungal transcription control sequences. Punt, P. J.;A. Kuyvenhoven;C. A. van den Hondel
  49. Mol. Gen. Genet. v.262 A new transcriptional activator for amylase genes in Aspergillus. Petersen, K. L.;J. Lehmbeck;T. Christensen
  50. Curr. Genet. v.14 The MAL63 gene of Saccharomyces encodes a cysteine-zinc finger protein. Kim, J.;C. A. Michels
  51. J. Bacteriol. v.174 A zinc finger protein from Candida albicans is involved in sucrose utilization. Kelly, R.;K. J. Kwon-Chung
  52. Appl. Environ. Microbiol. v.64 Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Christensen, T.;M. J. Hynes;M. A. Davis
  53. Genetics v.153 The TamA protein fused to a DNA-binding domain can re- cruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Small, A. J.;M. J. Hynes;M. A. Davis
  54. Mol. Gen. Genet. v.254 The acetate regulatory gene facB of Aspergillus nidulans encodes a Zn(II)2Cys6 transcriptional activator. Todd, R. B.;R. L. Murphy;H. M. Martin;J. A. Sharp;M. A. Davis;M. E. Katz;M. J. Hynes
  55. Mol. Gen. Genet. v.262 Cat8p, the activator of gluconeogenic genes in Saccharomyces cerevisiae, regulates carbon source-dependent expression of NADPdependent cytosolic isocitrate dehydrogenase (Idp2p) and lactate permease (Jen1p). Bojunga, N.;K. D. Entian
  56. EMBO J. v.17 Sip4, a Snf1 kinasedependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. Vincent, O.;M. Carlson
  57. J. Bacteriol. v.131 Induction of the acetamidase of Aspergillus nidulans by acetate metabolism. Hynes, M. J.
  58. Gene v.122 Structural and functional analysis of the amdR regulatory gene of Aspergillus oryzae. Wang, X. W.;M. J. Hynes;M. A. Davis
  59. FEMS Microbiol. Lett. v.151 Carbon repression in Aspergilli. Ruijter, G. J. and J. Visser
  60. Mol. Microbiol. v.31 Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Orejas, M.;A. P. MacCabe;J. A. Perez Gonzalez;S. Kumar;D. Ramon
  61. J. Biol. Chem. v.273 The CreA repressor is the sole DNA-binding protein responsible for carbon catabolite repression of the alcA gene in Aspergillus nidulans via its binding to a couple of specific sites. Panozzo, C.;E. Cornillot;B. Felenbok
  62. J. Bacteriol. v.182 Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. Cubero, B., D. Gomez, and C. Scazzocchio
  63. EMBO J. v.9 Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. Nehlin, J. O.;H. Ronne
  64. EMBO J. v.14 The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. Tilburn, J.;S. Sarkar;D. A. Widdick;E. A. Espeso;M. Orejas;J. Mungroo;M. A. Penalva;and H. N. Arst
  65. Genes Dev. v.9 Activation of the Aspergillus PacC transcription factor in response to alkaline ambient pH requires proteolysis of the carboxy-terminal moiety. Orejas, M.;E. A. Espeso;J. Tilburn;S. Sarkar;H. N. Arst;M. A. Penalva
  66. EMBO J. v.19 On how a transcription factor can avoid its proteolytic activation in the absence of signal transduction. Espeso, E. A.;T. Roncal;E. Diez;L. Rainbow;E. Bignell;J. Alvaro;T. Suarez;S. H. Denison;J. Tilburn;H. N. Arst;M. A. Penalva
  67. Genes Dev. v.4 The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Olesen, J. T.;L. Guarente
  68. Nucleic Acids Res. v.19 The amdR product and a CCAAT-binding factor bind to adjacent, possibly overlapping DNA sequences in the promoter region of the Aspergillus nidulans amdS gene. van Heeswijck, R.;M. J. Hynes
  69. Eur. J. Biochem. v.238 The Aspergillus nidulans penicillin-biosynthesis gene aat penDE) is controlled by a CCAAT-containing DNA element. Litzka, O.;K. Then Bergh;A. A. Brakhage
  70. Mol. Gen. Genet. v.257 The Aspergillus nidulans CCAAT-binding factor AnCP/ AnCF is a heteromeric protein analogous to the HAP complex of Saccharomyces cerevisiae. Kato, M.;A. Aoyama;F. Naruse;Y. Tateyama;K. Hayashi;M. Miyazaki;P. Papagiannopoulos;M. A. Davis;M. J. Hynes;T. Kobayashi;N. Tsukagoshi
  71. Curr. Genet. v.37 An Aspergillus oryzae CCAAT-binding protein, AoCP, is involved in the highlevel expression of the Taka-amylase A gene. Tanaka, A.;M. Kato;H. Hashimoto;K. Kamei;F. Naruse;P. Papagiannopoulos;M. A. Davis;M. J. Hynes;T. Kobayashi;N. Tsukagoshi
  72. Eur. J. Biochem. v.117 An α-amanitin-resistant DNA-dependent RNA polymerase II from the fungus Aspergillus nidulans. Stunnenberg, H. G.;L. M. Wennekes;T. Spierings;H. W. van den Broek
  73. Microbiology v.143 The TBP gene from Aspergillus nidulans-structure and expression in Saccharo- myces cerevisiae. Kucharski, R.;E. Bartnik
  74. Cell v.50 Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Nonet, M.;D. Sweetser;R. A. Young
  75. Mol. Cell. Biol. v.8 Genetic analysis of the repetitive carboxyl- terminal domain of the largest subunit of mouse RNA polymerase II. Bartolomei, M. S.;N. F. Halden;C. R. Cullen;J. L. Corden
  76. Mol. Cell. Biol. v.8 The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Allison, L. A.;J. K. Wong;V. D. Fitzpatrick;M. Moyle;C. J. Ingles
  77. Cell v.69 Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Usheva, A.;E. Maldonado;A. Goldring;H. Lu;C. Houbavi;D. Reinberg;Y. Aloni
  78. Cell v.89 Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog. Steinmetz, E. J.
  79. Cell v.42 Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Allison, L. A.;M. Moyle;M. Shales;C. J. Ingles
  80. Nucleic Acids Res. v.19 Cloning and sequence determination of the Schizosaccharomyces pombe rpb1 gene encoding the largest subunit of RNA polymerase II. Azuma, Y.;M. Yamagishi;R. Ueshima;A. Ishihama
  81. Gene v.209 The largest subunit of mouse RNA polymerase II (RPB1) functionally substituted for its yeast counterpart in vivo. Singleton, T. L.;E. Wilcox
  82. Genetics v.140 Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. West, M. L.;J. L. Corden
  83. Genetics v.143 Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the Cterminal domain of yeast RNA polymerase II. Yuryev, A.;J. L. Corden
  84. Glycobiology v.6 O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Hart, G. W.;L. K. Kreppel;F. I. Comer;C. S. Arnold;D. M. Snow;Z. Ye;X. Cheng;D. DellaManna;D. S. Caine;B. J. Earles;Y. Akimoto;R. N. Cole;B. K. Hayes
  85. J. Biol. Chem. v.261 The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. Holt, G. D.;G. W. Hart
  86. J. Biol. Chem. v.262 O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. Hanover, J. A.;C. K. Cohen;M. C. Willingham;M. K. Park
  87. Proc.Natl. Acad. Sci. USA v.86 Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Jackson, S. P.;R. Tjian
  88. Cell v.57 A glycosylated liver-specific transcription factor stimulates transcription of the albumin gene. Lichtsteiner, S.;U. Schibler
  89. J. Biol. Chem. v.267 Localization of O-GlcNAc modification on the serum response transcription factor. Reason, A. J.;H. R. Morris;M. Panico;R. Marais;R. H. Treisman;R. S. Haltiwanger;G. W. Hart;W. G. Kelly;A. Dell
  90. J. Biol. Chem. v.268 RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. Kelly, W. G., M. E. Dahmus, and G. W. Hart
  91. Biochemistry v.35 Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Roquemore, E. P.;M. R. Chevrier;R. J. Cotter;G. W. Hart
  92. J. Biol. Chem. v.267 Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. Chou, C. F.;A. J. Smith;M. B. Omary
  93. Cell v.55 O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Jackson, S. P.;R. Tjian
  94. Biosci. Biotechnol. Biochem. v.58 Glycosylated DNAbinding proteins from filamentus fungus, Aspergillus oryzae - Modification with N-acetylglucosamine monosaccharide through an O-glycosidic linkage. Machida, M.;Y. Jigmi
  95. Mol. Cell. Biol. v.11 Yeast glycolytic mRNAs are differentially regulated. Moore, P. A.;F. A. Sagliocco;R. M. Wood;A. J. Brown
  96. Biosci. Biotechnol. Biochem. v.64 Molecular cloning and characterization of rpbA encoding RNA polymerase II largest subunit from a filamentous fungus, Aspergillus oryzae. Nakajima, K.;Y. C. Chang;T. Suzuki;Y. Jigami;M. Machida