The Journal of the Institute of Internet, Broadcasting and Communication
/
v.17
no.2
/
pp.15-23
/
2017
The person Re-identification is the most challenging part of computer vision due to the significant changes in human pose and background clutter with occlusions. The picture from non-overlapping cameras enhance the difficulty to distinguish some person from the other. To reach a better performance match, most methods use feature selection and distance metrics separately to get discriminative representations and proper distance to describe the similarity between person and kind of ignoring some significant features. This situation has encouraged us to consider a novel method to deal with this problem. In this paper, we proposed an enhanced recurrent neural network with three-tier hierarchical network for person re-identification. Specifically, the proposed recurrent neural network (RNN) model contain an iterative expectation maximum (EM) algorithm and three-tier Hierarchical network to jointly learn both the discriminative features and metrics distance. The iterative EM algorithm can fully use of the feature extraction ability of convolutional neural network (CNN) which is in series before the RNN. By unsupervised learning, the EM framework can change the labels of the patches and train larger datasets. Through the three-tier hierarchical network, the convolutional neural network, recurrent network and pooling layer can jointly be a feature extractor to better train the network. The experimental result shows that comparing with other researchers' approaches in this field, this method also can get a competitive accuracy. The influence of different component of this method will be analyzed and evaluated in the future research.
By increasing the vertical stiffness of the rail fastening system, the dynamic wheel load of the vehicle can be increased on the ballast track, though this increases the cost of track maintenance. On the other hand, the resistance acting on the wheel is decreased, which lowers the cost of the electric power to run the train. For this reason, the determination of the optimal fastener stiffness is important when attempting to minimize the economic costs associated with both track maintenance and energy to operate the train. In this study, a numerical method for evaluating the optimal vertical stiffness of the fasteners used on ballast track is presented on the basis of the process proposed by L$\acute{o}$pez-Pita et al. They used an approximation formula while calculating the dynamic wheel load. The evaluated fastener stiffness is mainly affected by the calculated dynamic wheel load. In this study, the dynamic wheel load is more precisely evaluated with an advanced vehicle-track interaction model. An appropriate range of the stiffness of the fastener applicable to the design of ballast track along domestic high-speed lines is proposed.
Journal of the Korea Institute of Information Security & Cryptology
/
v.13
no.3
/
pp.17-26
/
2003
Recently, as the internet is widespread rapidly among the public, people can use a variety of useful information services through the internet. Accordingly, the protection of information supplied by computer networks 5 has become a matter of primary concern on the whole world. To accede to the realistic demands, it has been worked out some countermeasures to cultivate the experts in information security by the government and many educational facilities. Already the government authority has carried out the each kinds of concerning projects under the framed a policy, Five-Year Development Plan for Information Security Technology. Also, many domestic universities perceives such an international trend, and so they frame their plans to train for the experts in this field, including to found a department with respect to the information security. They are ready to execute their tangible works, such as establishment of educational goal, development of teaching materials, planning curriculum, construction of laboratories and ensuring instructors. Moreover, such universities lead to their students who want to be information security experts to get the fundamental knowledge to lay the foundation for acquiring the information security technology in their bachelor course. In this note, we survey and analyze the curricula of newly-established or member-extended departments with respect to information security fields of some leading universities in the inside and outside of the country, and in conclusion, we propose the effective model of curriculum and educational goal to train the students for the information security experts.
This study conducted an online survey to understand what elementary school teachers think about the learning contents of elementary science education subjects needed to train elementary science teachers suitable for the era of the 4th Industrial Revolution. The results are as follows: First, there were many elementary school teachers who thought that the current learning content of elementary science education was not suitable for the era of the 4th Industrial Revolution and that it needed to modify the learning content. Many of the teachers said that the learning content of the subject did not include the characteristics of the 4th Industrial Revolution, but also did not reflect the changes of the times and remained in the past. Second, the content that elementary school teachers thought was important in training elementary school teachers suitable for the era of the 4th Industrial Revolution was mainly related to the interests and curiosity of students, and scientific experiments or inquiry. On the contrary, the items that they thought should be deleted or reduced included science learning theory, science teaching/learning model, nature of science, and guidance for gifted children. Third, the contents that elementary school teachers thought needed to be added as learning content of elementary science education subjects were SSI education, science education-related social change and future prediction, advanced science technology, STEAM guidance, and integrated education within the science field. Fourth, in order to train elementary school teachers suitable for the era of the 4th Industrial Revolution, the contents that they thought should be introduced first as learning content of elementary science education subjects were SSI education, integrated education within the science field, STEAM guidance, and core competencies. Other contents that need to be introduced were software education, safety education, and project learning methods.
While the frequency of seismic occurrence has been increasing recently, the domestic seismic response system is weak, the objective of this research is to compare and analyze the seismic vulnerability of buildings using statistical analysis and machine learning techniques. As the result of using statistical technique, the prediction accuracy of the developed model through the optimal scaling method showed about 87%. As the result of using machine learning technique, because the accuracy of Random Forest method is 94% in case of Train Set, 76.7% in case of Test Set, which is the highest accuracy among the 4 analyzed methods, Random Forest method was finally chosen. Therefore, Random Forest method was derived as the final machine learning technique. Accordingly, the statistical analysis technique showed higher accuracy of about 87%, whereas the machine learning technique showed the accuracy of about 76.7%. As the final result, among the 22,296 analyzed building data, the seismic vulnerabilities of 1,627(0.1%) buildings are expected as more dangerous when the statistical analysis technique is used, 10,146(49%) buildings showed the same rate, and the remaining 10,523(50%) buildings are expected as more dangerous when the machine learning technique is used. As the comparison of the results of using advanced machine learning techniques in addition to the existing statistical analysis techniques, in spatial analysis decisions, it is hoped that this research results help to prepare more reliable seismic countermeasures.
Recently, due to the introduction of high-tech equipment in interactive exhibits, many people's attention has been concentrated on Interactive exhibits that can double the exhibition effect through the interaction with the audience. In addition, it is also possible to measure a variety of audience reaction in the interactive exhibition. Among various audience reactions, this research uses the change of the facial features that can be collected in an interactive exhibition space. This research develops an artificial neural network-based prediction model to predict the response of the audience by measuring the change of the facial features when the audience is given stimulation from the non-excited state. To present the emotion state of the audience, this research uses a Valence-Arousal model. So, this research suggests an overall framework composed of the following six steps. The first step is a step of collecting data for modeling. The data was collected from people participated in the 2012 Seoul DMC Culture Open, and the collected data was used for the experiments. The second step extracts 64 facial features from the collected data and compensates the facial feature values. The third step generates independent and dependent variables of an artificial neural network model. The fourth step extracts the independent variable that affects the dependent variable using the statistical technique. The fifth step builds an artificial neural network model and performs a learning process using train set and test set. Finally the last sixth step is to validate the prediction performance of artificial neural network model using the validation data set. The proposed model is compared with statistical predictive model to see whether it had better performance or not. As a result, although the data set in this experiment had much noise, the proposed model showed better results when the model was compared with multiple regression analysis model. If the prediction model of audience reaction was used in the real exhibition, it will be able to provide countermeasures and services appropriate to the audience's reaction viewing the exhibits. Specifically, if the arousal of audience about Exhibits is low, Action to increase arousal of the audience will be taken. For instance, we recommend the audience another preferred contents or using a light or sound to focus on these exhibits. In other words, when planning future exhibitions, planning the exhibition to satisfy various audience preferences would be possible. And it is expected to foster a personalized environment to concentrate on the exhibits. But, the proposed model in this research still shows the low prediction accuracy. The cause is in some parts as follows : First, the data covers diverse visitors of real exhibitions, so it was difficult to control the optimized experimental environment. So, the collected data has much noise, and it would results a lower accuracy. In further research, the data collection will be conducted in a more optimized experimental environment. The further research to increase the accuracy of the predictions of the model will be conducted. Second, using changes of facial expression only is thought to be not enough to extract audience emotions. If facial expression is combined with other responses, such as the sound, audience behavior, it would result a better result.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.435-444
/
2019
Recently, DL (Deep Learning) has been rapidly applied in various fields. In particular, classification and object recognition from images are major tasks in computer vision. Most of the DL utilizing imagery is primarily based on the CNN (Convolutional Neural Network) and improving performance of the DL model is main issue. While most CNNs are involve with images for training data, this paper aims to classify and recognize objects using DSM (Digital Surface Model), and slope and aspect information derived from the DSM instead of images. The DSM data sets used in the experiment were established by DGPF (German Society for Photogrammetry, Remote Sensing and Geoinformatics) and provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The CNN-based SegNet model, that is evaluated as having excellent efficiency and performance, was used to train the data sets. In addition, this paper proposed a scheme for training data generation efficiently from the limited number of data. The results demonstrated DSM and derived data could be feasible for semantic classification with desirable accuracy using DL.
Objectives : The usage of acupuncture has gained popularity for certain chronic pain conditions. However, the efficacy of acupuncture in various diseases has not been fully established and the underlying mechanism is not clearly understood. In the present study, the effect of electroacupuncture (EA) applied to yangno$(SI_6)$ on the neuropathic pain was examined. Methods : A common source of persistent pain in human is a neuropathic pain. Neuropathic pain was induced by tight ligation of L5 spinal nerve. When rats developed pain behaviors, EA was applied for 30 min. under enflurane anesthesia with repeated train stimuli at the intensity of 10X of muscle twitch threshold. The foot withdraw latency of the hind limb was measured for an indicator of pain level after each manipulation. Results : EA increased the mechanical threshold of the foot in the rat model of neuropathic pain significantly for the duration of 1 hr. suggesting a partial alleviation of pain. EA applied to SI6 point produced a significant improvement of mechanical sensitivity of the foot lasting for at least 1 h. However, $ST_{36}$ point did not produce any significant increase of mechanical sensitivity. The improvement of mechanical threshold was interpreted as an analgesic effect. The analgesic effort was specific to the acupuncture point since the analgesic effect on the neuropathic pain model could not be mimicked by EA applied to a point, $ST_{36}$. In addition, this analgesic effect of EA is mediated by a adrenergic mechanism of descending control of spinal cord from the brain. Conclusions : The data suggest that EA produces a potent analgesic effect on the neuropathic pain model in the rat; and 2) that EA-induced analgesia is mediated by a adrenergic mechanism of descending control in a point specific manner.
This paper introduces and implements a Sound Event Detection (SED) system based on weakly-supervised learning where only part of the data is labeled, and analyzes the effect of parameters. The SED system estimates the classes and onset/offset times of events in the acoustic signal. In order to train the model, all information on the event class and onset/offset times must be provided. Unfortunately, the onset/offset times are hard to be labeled exactly. Therefore, in the weakly-supervised task, the SED model is trained by "strongly labeled data" including the event class and activations, "weakly labeled data" including the event class, and "unlabeled data" without any label. Recently, the SED systems using the mean-teacher model are widely used for the task with several parameters. These parameters should be chosen carefully because they may affect the performance. In this paper, performance analysis was performed on parameters, such as the feature, moving average parameter, weight of the consistency cost function, ramp-up length, and maximum learning rate, using the data of DCASE 2020 Task 4. Effects and the optimal values of the parameters were discussed.
This research propose and simulate a solar power generation system monitoring system based on Modbus TCP communication using RaspberryPi, an IOT equipment, as a master and an inverter as a slave. In this model, various sensors are added to the RaspberryPi to add necessary information for monitoring solar power plants, and power generation prediction and monitoring information are transmitted to the smart phone through real-time power generation prediction. In addition, information that is continuously generated by the solar power plant is built on the server as big data, and a deep learning model for predicting power generation is trained and updated. As a result of the study, stable communication was possible based on Modbus TCP with the Raspberry Pi in the inverter, and real-time prediction was possible with the deep learning model learned in the Raspberry Pi. The server was able to train various deep learning models with big data, and it was confirmed that LSTM showed the best error with a learning error of 0.0069, a test error of 0.0075, and an RMSE of 0.0866. This model suggested that it is possible to implement a real-time monitoring system that is simpler, more convenient, and can predict the amount of power generation for inverters of various manufacturers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.