• 제목/요약/키워드: traffic sign recognition

검색결과 63건 처리시간 0.024초

도로시설물 관리를 위한 교통안전표지 인식 및 자동위치 취득 방법 연구 (The Road Traffic Sign Recognition and Automatic Positioning for Road Facility Management)

  • 이준석;윤덕근
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.155-161
    • /
    • 2013
  • PURPOSES: This study is to develop a road traffic sign recognition and automatic positioning for road facility management. METHODS: In this study, we installed the GPS, IMU, DMI, camera, laser sensor on the van and surveyed the car position, fore-sight image, point cloud of traffic signs. To insert automatic position of traffic sign, the automatic traffic sign recognition S/W developed and it can log the traffic sign type and approximate position, this study suggests a methodology to transform the laser point-cloud to the map coordinate system with the 3D axis rotation algorithm. RESULTS: Result show that on a clear day, traffic sign recognition ratio is 92.98%, and on cloudy day recognition ratio is 80.58%. To insert exact traffic sign position. This study examined the point difference with the road surveying results. The result RMSE is 0.227m and average is 1.51m which is the GPS positioning error. Including these error we can insert the traffic sign position within 1.51m CONCLUSIONS: As a result of this study, we can automatically survey the traffic sign type, position data of the traffic sign position error and analysis the road safety, speed limit consistency, which can be used in traffic sign DB.

자율주행을 위한 교통신호 인식에 관한 연구 (A study on the recognition to road traffic sign and traffic signal for autonomous navigation)

  • 고현민;이호순;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1375-1378
    • /
    • 1997
  • In this paper, we presents the algorithm which is to recognize the traffic sign on the road the traffic signal in a video image for autonomous navigation. First, the rocognition of traffic sign on the road can be detected using boundary point estimation form some scan-lines within the lane deducted. For this algorithm, index matrix method is used to detemine what sign is. Then, the traffic signal recognition is performed by usign the window minified by several scan-lines which position may be expected. For this algoritm, line profile concept is adopted.

  • PDF

자율주행 차량을 위한 교통표지판 인식 및 RANSAC 기반의 모션예측을 통한 추적 (Traffic Sign Recognition, and Tracking Using RANSAC-Based Motion Estimation for Autonomous Vehicles)

  • 김성욱;이준웅
    • 제어로봇시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.110-116
    • /
    • 2016
  • Autonomous vehicles must obey the traffic laws in order to drive actual roads. Traffic signs erected at the side of roads explain the road traffic information or regulations. Therefore, traffic sign recognition is necessary for the autonomous vehicles. In this paper, color characteristics are first considered to detect traffic sign candidates. Subsequently, we establish HOG (Histogram of Oriented Gradients) features from the detected candidate and recognize the traffic sign through a SVM (Support Vector Machine). However, owing to various circumstances, such as changes in weather and lighting, it is difficult to recognize the traffic signs robustly using only SVM. In order to solve this problem, we propose a tracking algorithm with RANSAC-based motion estimation. Using two-point motion estimation, inlier feature points within the traffic sign are selected and then the optimal motion is calculated with the inliers through a bundle adjustment. This approach greatly enhances the traffic sign recognition performance.

교통 신호 인식을 위한 경량 잔류층 기반 컨볼루션 신경망 (Lightweight Residual Layer Based Convolutional Neural Networks for Traffic Sign Recognition)

  • ;류재흥
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.105-110
    • /
    • 2022
  • 교통 표지 인식은 교통 관련 문제를 해결하는 데 중요한 역할을 한다. 교통 표지 인식 및 분류 시스템은 교통안전, 교통 모니터링, 자율주행 서비스 및 자율주행 차의 핵심 구성 요소이다. 휴대용 장치에 적용할 수 있는 경량 모델은 설계 의제의 필수 측면이다. 우리는 교통 표지 인식 시스템을 위한 잔여 블록이 있는 경량 합성곱 신경망 모델을 제안한다. 제안된 모델은 공개적으로 사용 가능한 벤치마크 데이터에서 매우 경쟁력 있는 결과를 보여준다.

Revolutionizing Traffic Sign Recognition with YOLOv9 and CNNs

  • Muteb Alshammari;Aadil Alshammari
    • International Journal of Computer Science & Network Security
    • /
    • 제24권8호
    • /
    • pp.14-20
    • /
    • 2024
  • Traffic sign recognition is an essential feature of intelligent transportation systems and Advanced Driver Assistance Systems (ADAS), which are necessary for improving road safety and advancing the development of autonomous cars. This research investigates the incorporation of the YOLOv9 model into traffic sign recognition systems, utilizing its sophisticated functionalities such as Programmable Gradient Information (PGI) and Generalized Efficient Layer Aggregation Network (GELAN) to tackle enduring difficulties in object detection. We employed a publically accessible dataset obtained from Roboflow, which consisted of 3130 images classified into five distinct categories: speed_40, speed_60, stop, green, and red. The dataset was separated into training (68%), validation (21%), and testing (12%) subsets in a methodical manner to ensure a thorough examination. Our comprehensive trials have shown that YOLOv9 obtains a mean Average Precision (mAP@0.5) of 0.959, suggesting exceptional precision and recall for the majority of traffic sign classes. However, there is still potential for improvement specifically in the red traffic sign class. An analysis was conducted on the distribution of instances among different traffic sign categories and the differences in size within the dataset. This analysis aimed to guarantee that the model would perform well in real-world circumstances. The findings validate that YOLOv9 substantially improves the precision and dependability of traffic sign identification, establishing it as a dependable option for implementation in intelligent transportation systems and ADAS. The incorporation of YOLOv9 in real-world traffic sign recognition and classification tasks demonstrates its promise in making roadways safer and more efficient.

형태학적 방법을 사용한 세 단계 속도 표지판 인식법 (Korean Traffic Speed Limit Sign Recognition in Three Stages using Morphological Operations)

  • 키라칼 빈죤;김상기;김치성;한동석
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 하계학술대회
    • /
    • pp.516-517
    • /
    • 2015
  • The automatic traffic sign detection and recognition has been one of the highly researched and an important component of advanced driver assistance systems (ADAS). They are designed especially to warn the drivers of imminent dangers such as sharp curves, under construction zone, etc. This paper presents a traffic sign recognition (TSR) system using morphological operations and multiple descriptors. The TSR system is realized in three stages: segmentation, shape classification and recognition stage. The system is designed to attain maximum accuracy at the segmentation stage with the inclusion of morphological operations and boost the computation time at the shape classification stage using MB-LBP descriptor. The proposed system is tested on the German traffic sign recognition benchmark (GTSRB) and on Korean traffic sign dataset.

  • PDF

조도를 고려한 표지판 인식 (Traffic Sign Recognition Considering the Intensity of Illumination)

  • 차연화;전창묵;권태범;강성철
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.173-181
    • /
    • 2011
  • Recognition of traffic signs helps an unmanned ground vehicle to decide its behavior correctly, and it can reduce traffic accidents. However, low cost traffic sign recognition using a vision sensor is very difficult because the signs are exposed to various illumination conditions. This paper proposes a new approach to solve this problem using an illuminometer which detects the intensity of illumination. Using the intensity of illumination, the recognizer adjusts the parameters for image processing. Therefore, we can reduce the loss of information such as the shape and color of traffic signs. Experimental results show that the proposed method is able to improve the performance of traffic sign recognition in various weather and lighting conditions.

색상분할 및 객체 특징정보의 계층적 적용에 의한 신호등 및 속도 표지판 인식 (Traffic Light and Speed Sign Recognition by using Hierarchical Application of Color Segmentation and Object Feature Information)

  • 이강호;방민영;이규원
    • 정보처리학회논문지B
    • /
    • 제17B권3호
    • /
    • pp.207-214
    • /
    • 2010
  • 본 논문에서는 실제 도로환경의 신호등 및 속도표지판 영역 검출 및 인식 방법을 제안하였다. 밝기정보 및 HIS 컬러모델에기반한 색상정보를 이용하여 신호등을 인식하였다. 또한 HSI 컬러정보로부터 적색강도를 추정함으로써 속도 표지판을 검출하였다. 표지판의 경사여부를 판단하여 시계방향, 반시계방향으로 각각 표지판을 회전시켜 기울기를 보정한 후 인식을 행함으로써 인식률을 제고하였다. 도로환경의 동영상을 대상으로 인식을 행한 결과 신호등과 속도표지판이 혼합된 영상에서도 매우 강건한 인식 결과를 보인다.

컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식 (Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm)

  • 방걸원;강대욱;조완현
    • 정보처리학회논문지D
    • /
    • 제14D권7호
    • /
    • pp.809-818
    • /
    • 2007
  • 본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.

변형 보정과 원형 추적법에 의한 교통 표지판 인식 (Traffic Sign Recognition by the Variant-Compensation and Circular Tracing)

  • 이우범
    • 융합신호처리학회논문지
    • /
    • 제9권3호
    • /
    • pp.188-194
    • /
    • 2008
  • 본 논문에서는 지능형 자동차의 주행보조 시스템 중의 하나인 교통 표지판 인식을 위한 새로운 방법을 제안한다. 제안한 방법은 잡음, 회전, 크기 등의 변형된 교통 표지판으로부터 기하학적 방법을 이용하여 변형된 정도를 추정하여 교통 표지판 원형으로 보정한다. 그리고 교통 표지판 인식을 위해서 보정된 표지판 영상으로부터 순차적 색기반 군집화(Sequential color-based clustering)에 의한 주의, 규제, 지시, 보조 등의 1차적 분류에 따라서 해당 교통 표지판의 형태 특징인 인식 심벌을 추출한다. 그리고 추출된 인식 심벌에 원형 추척법을 적용하여 교통 표지판 최종 인식 작업을 수행한다. 제안하는 방법의 성능 평가를 위해서 교통 표지판 영상에 잡음, 회전, 크기 등의 임의 변형을 적용하여 다양한 실험 영상을 만들고, 적용한 결과 단일 변형에서는 95%, 혼합 변형에서는 93% 이상의 인식률을 보인다.

  • PDF