• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.035 seconds

LSP Congestion Control methods in ATM based MPLS on BcN

  • Kim Chul soo;Park Na jung;Ahn Gwi im;Lee Jung tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4A
    • /
    • pp.241-249
    • /
    • 2005
  • ATM based MPLS(Multiprotocol Label Switching) is discussed for its provisioning QOS commitment capabilities, Traffic engineering and smooth migration for BcN in Korea. At this time, due to the comprehensive nature of ATM protocol, ATM has been adapted as the backbone system for carrying Internet traffic[1,2,3,4]. This paper presents preventive congestion control mechanisms for detecting HTR(Hard-To-Reach) LSP(Label Switched Path) in ATM based MPLS systems. In particular, we have introduced a HTR LSP detection method using network signaling information in an ATM layer. MPLS related studies can cover LSP failures in a physical layer fault, it can not impact network congestion status. Here we will present the research results for introducing HTR LSP detection methods and control mechanisms and this mechanism can be implementing as SOC for high speed processing a packet header. We concluded that it showed faster congestion avoidance abilities with a more reduced system load and maximized the efficiency of network resources by restricting ineffective machine attempts.

Intrusion Detection Model based on Intelligent System (지능형 시스템기반의 침입탐지모델)

  • 김명준;양지흥;한명묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.243-248
    • /
    • 2002
  • 빠르게 변해 가는 정보화사회에서 침입 탐지 시스템은 정밀성과 적웅성, 그리고 확장성을 필요로 한다. 또한 복잡한 Network 환경에서 중요하고 기밀성이 유지되어야 할 리소스를 보호하기 위해, 더욱 구조적이고 지능적인 IDS(Intrusion Detection System)개발의 필요성이 요구되고 있다. 본 연구는 이를 위한, 지능적인 IDS를 위해 침입패턴을 생성하기 위한 모델을 도출함에 목적이 있다. 침입 패턴은 방대한 양의 데이터를 갖게 되고, 이를 정확하고 효율적으로 관리하기 위해서 데이터마이닝의 주요 2분야인 Link analysis와 Sequence analysis를 이용하여 정확하고 신뢰성 있는 침입규칙을 생성하기 위한 모델을 도출해낸다 이 모델은 "Time Based Traffic Model", "Host Based Traffic Model", "Content Model"로 각각 상이한 침입 패턴을 생성하게 된다. 이 모델을 이용하면 좀더 효율적이고 안정적으로 패턴을 생성 할 수 있다, 즉 지능형 시스템기반의 침입 탐지 모델을 구현할 수 있다. 이러한 모델로 생성한 규칙은 침입데이터를 대표하는 규칙이 되고, 이는 비정상 사용자와 정상 사용자를 분류하게 된다 모델에 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다. 사용된 데이터는 KDD컨테스트의 데이터를 이용하였다.

A Study on the Insider Behavior Analysis Using Machine Learning for Detecting Information Leakage (정보 유출 탐지를 위한 머신 러닝 기반 내부자 행위 분석 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, we design and implement PADIL(Prediction And Detection of Information Leakage) system that predicts and detect information leakage behavior of insider by analyzing network traffic and applying a variety of machine learning methods. we defined the five-level information leakage model(Reconnaissance, Scanning, Access and Escalation, Exfiltration, Obfuscation) by referring to the cyber kill-chain model. In order to perform the machine learning for detecting information leakage, PADIL system extracts various features by analyzing the network traffic and extracts the behavioral features by comparing it with the personal profile information and extracts information leakage level features. We tested various machine learning methods and as a result, the DecisionTree algorithm showed excellent performance in information leakage detection and we showed that performance can be further improved by fine feature selection.

Design of reactive traffic system using object detection (객체인식을 활용한 반응형 교통시스템 설계)

  • Geon Lee;Jiyoung Woo;InBeom Yang;NaYoung Lee;Yunjung Hong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.23-24
    • /
    • 2023
  • 본 논문에서는 신호등이 설치되지 않은 위험 구역에 대해 신호등을 설치하는 것이 아닌 객체 인식 기반의 반응형 교통 시스템을 설계하여 보행자나 운전자 모두에게 사고의 위험을 줄이는 시스템을 구현한다. 특정 구역에 보행자가 길을 건너기 위해 존재한다면 운전자에게 보행자가 있음을 직관적으로 보여주며, 보행자가 길을 건너고 있으면 운전자에게 보행자가 건너고 있다는 것을 나타내어 기존의 경직적인 신호 체계가 아닌 유동적으로 보행자와 운전자 간의 안전한 환경을 만드는 것을 목표로 구현했다. 데이터는 CGMU dataset과 MIO-TCD dataset에서 사람과 차량의 이미지를 추가로 수집한 이후 학습에 사용하였으며, 객체 인식은 YOLOv5를 기반으로 사용하였으며 이때 성능은 mAP 0.753을 보여주었다.

  • PDF

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

Measurement of Spatial Traffic Information by Image Processing (영상처리를 이용한 공간 교통정보 측정)

  • 권영탁;소영성
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • Traffic information can be broadly categorized into point information and spatial information. Point information can be obtained by chocking only the presence of vehicles at prespecified points(small area), whereas spatial information can be obtained by monitoring large area of traffic scene. To obtain spatial information by image processing, we need to track vehicles in the whole area of traffic scene. Image detector system based on global tracking consists of video input, vehicle detection, vehicle tracking, and traffic information measurement. For video input, conventional approaches used auto iris which is very poor in adaptation for sudden brightness change. Conventional methods for background generation do not yield good results in intersections with heave traffic and most of the early studies measure only point information. In this paper, we propose user-controlled iris method to remedy the deficiency of auto iris and design flame difference-based background generation method which performs far better in complicated intersections. We also propose measurement method for spatial traffic information such as interval volume/lime/velocity, queue length, and turning/forward traffic flow. We obtain measurement accuracy of 95%∼100% when applying above mentioned new methods.

  • PDF

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

A Statistic-based Response System against DDoS Using Legitimated IP Table (검증된 IP 테이블을 사용한 통계 기반 DDoS 대응 시스템)

  • Park, Pilyong;Hong, Choong-Seon;Choi, Sanghyun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.827-838
    • /
    • 2005
  • DDoS (Distributed Denial of Service) attack is a critical threat to current Internet. To solve the detection and response of DDoS attack on BcN, we have investigated detection algorithms of DDoS and Implemented anomaly detection modules. Recently too many technologies of the detection and prevention have developed, but it is difficult that the IDS distinguishes normal traffic from the DDoS attack Therefore, when the DDoS attack is detected by the IDS, the firewall just discards all over-bounded traffic for a victim or absolutely decreases the threshold of the router. That is just only a method for preventing the DDoS attack. This paper proposed the mechanism of response for the legitimated clients to be protected Then, we have designed and implemented the statistic based system that has the automated detection and response functionality against DDoS on Linux Zebra router environment.

Ensemble of Convolution Neural Networks for Driver Smartphone Usage Detection Using Multiple Cameras

  • Zhang, Ziyi;Kang, Bo-Yeong
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • Approximately 1.3 million people die from traffic accidents each year, and smartphone usage while driving is one of the main causes of such accidents. Therefore, detection of smartphone usage by drivers has become an important part of distracted driving detection. Previous studies have used single camera-based methods to collect the driver images. However, smartphone usage detection by employing a single camera can be unsuccessful if the driver occludes the phone. In this paper, we present a driver smartphone usage detection system that uses multiple cameras to collect driver images from different perspectives, and then processes these images with ensemble convolutional neural networks. The ensemble method comprises three individual convolutional neural networks with a simple voting system. Each network provides a distinct image perspective and the voting mechanism selects the final classification. Experimental results verified that the proposed method avoided the limitations observed in single camera-based methods, and achieved 98.96% accuracy on our dataset.