• Title/Summary/Keyword: traffic aware

Search Result 177, Processing Time 0.023 seconds

An Efficient QoS-Aware Bandwidth Re-Provisioning Scheme in a Next Generation Wireless Packet Transport Network (차세대 이동통신 패킷 수송망에서 서비스 품질을 고려한 효율적인 대역폭 재할당 기법)

  • Park, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.30-37
    • /
    • 2006
  • In this paper, we propose a QoS-aware efficient bandwidth re-provisioning scheme in a next generation wireless packet transport network. At the transport network layer, it classifies the traffic of the radio network layer into a real time class and a non-real time class. Using an auto-regressive time-series model and a given packet loss probability, our scheme predicts the needed bandwidth of the non-real time class at every re-provisioning interval. Our scheme increases the system capacity by releasing the unutilized bandwidth of the non-real time traffic class for the real-time traffic class while insuring a controllable upper bound on the packet loss probability of a non-real time traffic class. Through empirical evaluations using the real Internet traffic traces, our scheme is validated that it can increase the bandwidth efficiency while guaranteeing the quality of service requirements of the non-real time traffic class.

Energy-Aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

  • Wei, Yunkai;Zhang, Xiaoning;Xie, Lei;Leng, Supeng
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.559-566
    • /
    • 2016
  • Software defined network (SDN) can effectively improve the performance of traffic engineering and will be widely used in backbone networks. Therefore, new energy-saving schemes must take SDN into consideration; this action is extremely important owing to the rapidly increasing energy consumption in telecom and Internet service provider (ISP) networks. Meanwhile, the introduction of SDN in current networks must be incremental in most cases, for technical and economic reasons. During this period, operators must manage hybrid networks in which SDN and traditional protocols coexist. In this study, we investigate the energy-efficient traffic engineering problem in hybrid SDN/Internet protocol (IP) networks. First, we formulate the mathematical optimization model considering the SDN/IP hybrid routing mode. The problem is NP-hard; therefore, we propose a fast heuristic algorithm named hybrid energy-aware traffic engineering (HEATE) as a solution. In our proposed HEATE algorithm, the IP routers perform shortest-path routing by using distributed open shortest path first (OSPF) link weight optimization. The SDNs perform multipath routing with traffic-flow splitting managed by the global SDN controller. The HEATE algorithm determines the optimal setting for the OSPF link weight and the splitting ratio of SDNs. Thus, the traffic flow is aggregated onto partial links, and the underutilized links can be turned off to save energy. Based on computer simulation results, we demonstrate that our algorithm achieves a significant improvement in energy efficiency in hybrid SDN/IP networks.

Deep Packet Inspection Time-Aware Load Balancer on Many-Core Processors for Fast Intrusion Detection

  • Choi, Yoon-Ho;Park, Woojin;Choi, Seok-Hwan;Seo, Seung-Woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.169-177
    • /
    • 2016
  • To realize high-speed intrusion detection by accommodating many regular expression (regex)-based signatures and growing network link capacities, we propose the Service TimE-Aware Load-balancing (STEAL) algorithm. This work is motivated from the observation that utilization of a many-core network intrusion detection system (NIDS) is influenced by unfair computational distribution among many-core NIDS nodes. To avoid such unfair computational distribution, STEAL is designed to dynamically distribute a large volume of traffic among many-core NIDS nodes based on packet service time, which is represented by the deep packet time in many-core NIDS nodes. From experiments, we show that compared to the commonly used load-balancing algorithm based on arrival rate, STEAL increases the number of received packets (i.e., decreases the number of dropped packets) in many-core NIDS. Specifically, by integrating an open source NIDS (i.e. Bro) with STEAL, we show that even under attack-dominant traffic and with many signatures, STEAL can rapidly improve the performance of many-core NIDS to realize high-speed intrusion detection.

DiffServ-aware-MPLS Network Performance Analysis (DiffServ-aware-MPLS 네트워크 성능 분석)

  • Cho Hae-Seong
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.4
    • /
    • pp.107-112
    • /
    • 2004
  • As the internet service evolves fast recently, guarantee request of QoS (Quality of Service) by characteristic of traffic source as well as high rate of data is going greatest. Accordingly intemet service technology also is changing rapidly, technology that guarantee QoS in existent network service technology is developed or network model that guarantee new QoS is presented. By DiffServ-aware-MPLS network that present in IETF (Internet Engineering Task Force) to guarantee QoS in this treatise does comparative analysis with existent network model, relative show that is superior, and present direction that compose next generation network wish to.

  • PDF

CAMR: Congestion-Aware Multi-Path Routing Protocol for Wireless Mesh Networks

  • Jang, Seowoo;Kang, Seok-Gu;Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.411-419
    • /
    • 2017
  • The Wireless Mesh Network (WMN) is a multi-hop wireless network consisting of mesh routers and clients, where the mesh routers have minimal mobility and form the backbone. The WMN is primarily designed to access outer network to mesh clients through backhaul gateways. As traffic converges on the gateways, traffic hotspots are likely to form in the neighborhood of the gateways. In this paper, we propose Congestion Aware Multi-path Routing (CAMR) protocol to tackle this problem. Upon congestion, CAMR divides the clients under a mesh STA into two groups and returns a different path for each group. The CAMR protocol triggers multi-path routing in such a manner that the packet reordering problem is avoided. Through simulations, we show that CAMR improves the performance of the WMN in terms of throughput, delay and packet drop ratio.

DCAR: Dynamic Congestion Aware Routing Protocol in Mobile Ad Hoc Networks

  • Kim, Young-Duk;Lee, Sang-Heon;Lee, Dong-Ha
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • In mobile ad hoc networks, most of on demand routing protocols such as DSR and AODV do not deal with traffic load during the route discovery procedure. To achieve load balancing in networks, many protocols have been proposed. However, existing load balancing schemes do not consider the remaining available buffer size of the interface queue, which still results in buffer overflows by congestion in a certain node which has the least available buffer size in the route. To solve this problem, we propose a load balancing protocol called Dynamic Congestion Aware Routing Protocol (DCAR) which monitors the remaining buffer length of all nodes in routes and excludes a certain congested node during the route discovery procedure. We also propose two buffer threshold values to select an optimal route selection metric between the traffic load and the minimum hop count. Through simulation study, we compare DCAR with other on demand routing protocols and show that the proposed protocol is more efficient when a network is heavily loaded.

  • PDF

Scalable Network Architecture for Flow-Based Traffic Control

  • Song, Jong-Tae;Lee, Soon-Seok;Kang, Kug-Chang;Park, No-Ik;Park, Heuk;Yoon, Sung-Hyun;Chun, Kyung-Gyu;Chang, Mi-Young;Joung, Jin-Oo;Kim, Young-Sun
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.205-215
    • /
    • 2008
  • Many control schemes have been proposed for flow-level traffic control. However, flow-level traffic control is implemented only in limited areas such as traffic monitoring and traffic control at edge nodes. No clear solution for end-to-end architecture has been proposed. Scalability and the lack of a business model are major problems for deploying end-to-end flow-level control architecture. This paper introduces an end-to-end transport architecture and a scalable control mechanism to support the various flow-level QoS requests from applications.

  • PDF

Traffic-Aware TXOP adjusting Algorithm for IEEE 802.11e Network (IEEE 802.11e에서 전송흐름을 고려한 TXOP 조정 알고리듬)

  • Joung, Soo-Kyoung;Kim, Nam-Il
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • This paper proposes a traffic-aware TXOP adjustment algorithm for the IEEE 802.11e networks. In the proposed algorithm the access point (AP) monitors the network traffics periodically and adjusts the TXOP value of the non-QoS traffic in order to improve the network throughput while maintaining the QoS of video and voice applications. The experimental results show that the proposed algorithm outperforms the legacy IEEE 802.11e in terms of the throughput and the fairness.

Performance Analysis of Buffer Aware Scheduling for Video Services in LTE Network

  • Lin, Meng-Hsien;Chen, Yen-Wen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3594-3610
    • /
    • 2015
  • Recent advancements in broadband wireless communication technologies enable mobile users to receive video streaming services with various smart devices. The long term evolution (LTE) network provides high bandwidth and low latency for several emerging mobile applications. This paper proposes the buffer aware scheduling (BAS) approach to schedule the downlink video traffic in LTE network. The proposed BAS scheme applies the weighting function to heuristically adjust the scheduling priority by considering the buffer status and channel condition of UE so as to reduce the time that UE stays in the connected state without receiving data. Both of 1080P and 2160P resolution video streaming sources were applied for exhaustive simulations to examine the performance of the proposed scheme by comparing to that of the fair bandwidth (FB) and the best channel quality indicator (CQI) schemes. The simulation results indicate that the proposed BAS scheme not only achieves better performance in power saving, streaming delivery time, and throughput than the FB scheme while maintaining the similar performance as the best CQI scheme in light traffic load. Specifically, the proposed scheme reduces streaming delivery time and generates less signaling overhead than the best CQI scheme when the traffic load is heavy.

QoS- and Revenue Aware Adaptive Scheduling Algorithm

  • Joutsensalo, Jyrki;Hamalainen, Timo;Sayenko, Alexander;Paakkonen, Mikko
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.68-77
    • /
    • 2004
  • In the near future packet networks should support applications which can not predict their traffic requirements in advance, but still have tight quality of service requirements, e.g., guaranteed bandwidth, jitter, and packet loss. These dynamic characteristics mean that the sources can be made to modify their data transfer rates according to network conditions. Depending on the customer&; needs, network operator can differentiate incoming connections and handle those in the buffers and the interfaces in different ways. In this paper, dynamic QoS-aware scheduling algorithm is presented and investigated in the single node case. The purpose of the algorithm is in addition to fair resource sharing to different types of traffic classes with different priorities ?to maximize revenue of the service provider. It is derived from the linear type of revenue target function, and closed form globally optimal formula is presented. The method is computationally inexpensive, while still producing maximal revenue. Due to the simplicity of the algorithm, it can operate in the highly nonstationary environments. In addition, it is nonparametric and deterministic in the sense that it uses only the information about the number of users and their traffic classes, not about call density functions or duration distributions. Also, Call Admission Control (CAC) mechanism is used by hypothesis testing.