• Title/Summary/Keyword: tracked wheel

Search Result 26, Processing Time 0.028 seconds

Dynamic Anlaysis of High Mobility Tracked Vehicles (고속주행용 궤도차량의 동적해석)

  • 김상두;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2001
  • In this study, modeling and analysis procedure for the dynamic analysis of a high mobility tracked vehicle system were studied. The vehicle model used in this investigation is assumed to be consist of two kinematically decoupled subsystems. The chassis subsystem consists of chassis frame, sprocket, support rollers, road wheels, idler wheel, road wheel arms and idle wheel arm, while the track subsystem is represented as a closed kinematic chain consisting of track links and end connectors interconnected by revolute joints with bushing. Nonlinear contact force module describing the interaction between track link, and sprocket, idler wheel, road wheel, support roller, ground was used. The effects of road wheel arms and idler wheel arm due to tension adjuster are also considered.

  • PDF

A Study for Residual Deformation and Strength Evaluation on Road Wheel of a Tracked Vehicle (궤도 차량 로드 휠 강도평가와 잔류 변형에 관한 연구)

  • Shin, Kuk-Sik;Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • A tracked vehicle is dependent on performance of power pack and suspension systems. Especially, road wheels which are components of suspension system contribute distributing vehicle weight on soil and preventing from misguiding tracks. In this study, the maximum force was calculated that a tracked vehicle is driven on the worst condition. And then, FE analyses were carried out to evaluate strength road wheel under maximum force condition. In standard of quality evaluation for road wheel, FE simulations and experimental works were carried out under thirty degree slant load of normal direction of shaft. And then, A relationship residual deformation for slant load was investigated. The result of this research is applicable to evaluate strength and to make use of basis data.

A Study on the Driving Analysis of Tracked Robot (무한궤도 로봇의 주행 해석에 관한 연구)

  • Lee, Sang-Ho;Ko, Jin-Suk;Jung, Yeon-Ha;Shin, Hyun-Soo;Kim, Chang-Joon;Lee, Seoung-Yeol;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.867-872
    • /
    • 2007
  • A tracked robot has an excellent mobility on the rough terrain. Especially, a tracked robot for driving has to get structural function in the every field. In this paper, we propose a tracked robot of a small rear wheel typed. Also compared and estimated a driving analysis about the tracked robot in considered the general environment. Compared 2 models are different in size of rear wheels but front wheels are same size each other. From comparing model, the radius of front wheels is 100mm and the radius of rear wheels is 100mm. The radius of front wheels is 100mm and the radius of rear wheels is 70mm from proposed tracked robot. Depend on these radiuses of values we are known driving torque values of an actuating wheel using Recurdyn. And estimated stress of rotated track by an actuating wheel using Ansys. finally, the designed robot has size of $600mm\;{\times}\;330mm\;{\times}\;150mm$, weight is 27kg and the tracked robot is actuated by 2 geared DC motors.

  • PDF

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.

Finite Element Analysis for the Prediction of Durability of Idler Wheel of Tracked Vehicle (궤도차량용 휠의 내구성 예측을 위한 유한요소 해석 기법 연구)

  • Lee, Kyoung-Ho;Roh, Keun-Lae;Lee, Young-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.676-682
    • /
    • 2009
  • The idler wheel installed at the front side of the newly developed tracked vehicle didn't meet the durability requirement by showing the crack failure near the jointed region at the wheel during the field test. To find the crack developing mechanism we constructed finite element model for the idler wheel representing the behavior of interface between each suspension units, material properties from the material test data and actual loading conditions. This paper shows a result that maximum von Mises stress near the bolt hole on the outer rim is higher than inner idler coressponding to the actual test result and that result was reversed by adopting the reinforcement outside of the outer rim.

A Study on Strength Evaluation of a Road Wheel of Multipurpose Tracked Vehicles (다목적전술차량의로드휠강도평가에관한연구)

  • Kam M.K.;Kim H.S.;Kim Y.J.;Kim W.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.473-476
    • /
    • 2005
  • Mobility of tracked vehicles is dependent on performance of its power equipment and suspension systems. Especially, its road wheels, components of its suspension systems, play an important role in distributing the vehicle weight on the ground and preventing from misguiding tracks. In this study, the maximum force acted on multipurpose tracked vehicles driven on the worst condition was calculated. And then FE analyses were carried out to evaluate the strength of the road wheels under the maximum force condition. For quality evaluation of the road wheels, FE simulations and experimental works were carried out under specific slant loads. Residual deformation for the slant loads was investigated and commented upon.

  • PDF

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.

Dynamic Modeling and Analysis of a High Mobility Tracked Vehicle (고속 궤도차량의 동역학적 모델링 및 해석)

  • Lee, Byung-Hoon;Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1486-1493
    • /
    • 2006
  • This paper presents a dynamic model of a high mobility tracked vehicle composed of rigid bodies. Track is modeled as an extensible cable and the track tension between the sprocket and roller is calculated by the catenary equation. The ground force acting on a road wheel is calculated by the Bekker's pressure-sinkage relationship using the segmented wheel model. System equations of motion and constraint acceleration equations are derived in the joint coordinate space using the velocity transformation method.