• Title/Summary/Keyword: track-pattern-based model

Search Result 30, Processing Time 0.032 seconds

Analysis of Slab Joint Opening Due to Temperature Drop in Continuous Precast Concrete Slab Track (연속 프리캐스트 콘크리트 슬래브궤도에서의 온도하강에 따른 슬래브 이음매 개구량 해석)

  • Jang, Seung-Yup;Lee, Jeong-Wan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1659-1663
    • /
    • 2011
  • Precast concrete slab track is a track structure to be installed by transporting and assembling precast concrete slabs manufactured at the factory. This method can improve concrete quality, provide easy maintenance and reduce construction time, compared with in-situ concrete track. However, the concrete slabs being continuously connected in longitudinal direction, due to the temperature change between summer and winter, the openings at slab joints have occurred. Thus, in this study, to identify the cause of this opening of slab joint, the joint opening caused by temperature drop in the longitudinally continuous precast concrete slab track has been predicted using three-dimensional finite element analysis, and compared with field measurements. Based on the proven model, the slab joint opening, and the stress pattern of concrete slab and steel reinforcement according to concrete slab-base friction properties, concrete-reinforcement bond properties, and prestressing were analyzed.

  • PDF

ATInSAR HOLOGRAM OBSERVATIONS OF COASTAL WAVE REFARCTION

  • Marghany, Maged
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.438-440
    • /
    • 2003
  • This study is introducing a new approach of ATInSAR hologram for modeling wave refraction spectra pattern. TOPSAR data with L$_{-HH}$ and C-vv bands utilized spatial variation of wave refraction. Based on the phase information in along track interferometry, and ATInSAR hologram the quantitative information such swell wave height and spectra energy have been modeled. The phase information in ATInSAR hologram images can be transferred to wave refraction The ATInSAR hologram can be used to investigate the wave refraction pattern along the coastal waters. The fringe information pattern was shown to be useful in modeling wave refaction spectra varaition. The hologram interferometry wave refraction model consists of two sub-models. The purpose of first sub-model is to determine the swell wave height by using ATInSAR. Second sub-model aims to generate the holographic interferometry from the information of two wave spectra which detected by ATInSAR technique. The azimuth cut-off variations along the fringe patterns will be estimated. As azimuth cut-off contains the wave height information which could be used the significant wave height variation in convergence and divergence zone.

  • PDF

Application of a Semi-Physical Tropical Cyclone Rainfall Model in South Korea to estimate Tropical Cyclone Rainfall Risk

  • Alcantara, Angelika L.;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.152-152
    • /
    • 2022
  • Only employing historical data limits the estimation of the full distribution of probable Tropical Cyclone (TC) risk due to the insufficiency of samples. Addressing this limitation, this study introduces a semi-physical TC rainfall model that produces spatially and temporally resolved TC rainfall data to improve TC risk assessments. The model combines a statistical-based track model based on the Markov renewal process to produce synthetic TC tracks, with a physics-based model that considers the interaction between TC and the atmospheric environment to estimate TC rainfall. The simulated data from the combined model are then fitted to a probability distribution function to compute the spatially heterogeneous risk brought by landfalling TCs. The methodology is employed in South Korea as a case study to be able to implement a country-scale-based vulnerability inspection from damaging TC impacts. Results show that the proposed model can produce TC tracks that do not only follow the spatial distribution of past TCs but also reveal new paths that could be utilized to consider events outside of what has been historically observed. The model is also found to be suitable for properly estimating the total rainfall induced by landfalling TCs across various points of interest within the study area. The simulated TC rainfall data enable us to reliably estimate extreme rainfall from higher return periods that are often overlooked when only the historical data is employed. In addition, the model can properly describe the distribution of rainfall extremes that show a heterogeneous pattern throughout the study area and that vary per return period. Overall, results show that the proposed approach can be a valuable tool in providing sufficient TC rainfall samples that could be an aid in improving TC risk assessment.

  • PDF

A Study on the Predition of Train Noise Propagation from a Level Railroad (평탄부 선로에서 철도소음의 전파예측에 관한 연구)

  • 주진수;박병전
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.187-194
    • /
    • 1998
  • In order to predict the train noise propagation from a level railroad, this paper presents the model of train noise source and the prediction model based on the results by using the sound intensity method. The prediction model gives the effects of geometric attenuation, ground attenuation, and barrier attenuation of noise. There are several principal assumption in developing model: (a) the train noise is primarily rolling noise; (b) the rail head and wheels are in good condition; (c) the height of source is 10cm above track; (d) the directivity pattern of train noise sources is a dipole source. Calculated results based on this model are compared with available field data and good agreement has been obtained.

  • PDF

Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002) (단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사)

  • Kim, Sena;Lim, Gyu-Ho
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

Assessment of Typhoon Trajectories and Synoptic Pattern Based on Probabilistic Cluster Analysis for the Typhoons Affecting the Korean Peninsula (확률론적 클러스터링 기법을 이용한 한반도 태풍경로 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Kwon, Hyun-Han;Kim, Ki-Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.385-396
    • /
    • 2014
  • Lately, more frequent typhoons cause extensive flood and wind damage throughout the summer season. In this respect, this study aims to develop a probabilistic clustering model that uses both typhoon genesis location and trajectories. The proposed model was applied to the 197 typhoon events that made landfall in the Korean peninsula from 1951 to 2012. We evaluate the performance of the proposed clustering model through a simulation study based on synthetic typhoon trajectories. The seven distinguished clusters for typhoons affecting Korean peninsula were identified. It was found that most of typhoon genesis originated from a remote position ($10^{\circ}{\sim}20^{\circ}N$, $120^{\circ}{\sim}150^{\circ}E$) near the Equator. Cluster, type B can be regarded as a major track due to the fact that its frequency is approximately about 25.4% out of 197 events and its direct association with strong positive rainfall anomalies.

A Path Generation Algorithm of Autonomous Robot Vehicle By the Sensor Platform and Optimal Controller Based On the Kinematic Model

  • Park, Tong-Jin;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.399-399
    • /
    • 2000
  • In this paper, path generation using the sensor platform is proposed. The sensor platform is composed two electric motors which make panning and tilting motions. An algorithm fur a real path form and an obstacle length is realized using a scanning algorithm to rotating the sensors on the sensor platform. An ARV (Autonomous Robot Vehicle) is able to recognize the given path by adapting this algorithm. In order for the ARV to navigate the path flexibly, a kinematic model needed to be constructed. The kinematic model of the ARV was reformed around its body center through a relative velocity relationship to controllability, which derives from the nonholonomic characteristics. The optimal controller that is based on tile kinematic model is operated purposefully to track a reference vehicle's path. The path generation algorithm is composed of two parks. On e part is the generating path pattern, and the other is used to avoid an obstacle. The optimal controller is used for tracking the reference path which is generated by recognizing the path pattern. Results of simulation show that this algorithm for an ARV is sufficient for path generation by small number of sensors and for low cost controller.

  • PDF

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.

Video Road Vehicle Detection and Tracking based on OpenCV

  • Hou, Wei;Wu, Zhenzhen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.226-233
    • /
    • 2022
  • Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF