DOI QR코드

DOI QR Code

Assessment of Typhoon Trajectories and Synoptic Pattern Based on Probabilistic Cluster Analysis for the Typhoons Affecting the Korean Peninsula

확률론적 클러스터링 기법을 이용한 한반도 태풍경로 및 종관기후학적 분석

  • Kim, Tae-Jeong (Department of Civil Engineering, Chonbuk National University) ;
  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Ki-Young (Infrastructure Research Center, K-water Institute)
  • 김태정 (전북대학교 토목공학과, 방재연구센터) ;
  • 권현한 (전북대학교 토목공학과, 방재연구센터) ;
  • 김기영 (한국수자원공사 K-water 연구원 기반시설연구소 기반연구 2팀)
  • Received : 2014.02.24
  • Accepted : 2014.03.25
  • Published : 2014.04.30

Abstract

Lately, more frequent typhoons cause extensive flood and wind damage throughout the summer season. In this respect, this study aims to develop a probabilistic clustering model that uses both typhoon genesis location and trajectories. The proposed model was applied to the 197 typhoon events that made landfall in the Korean peninsula from 1951 to 2012. We evaluate the performance of the proposed clustering model through a simulation study based on synthetic typhoon trajectories. The seven distinguished clusters for typhoons affecting Korean peninsula were identified. It was found that most of typhoon genesis originated from a remote position ($10^{\circ}{\sim}20^{\circ}N$, $120^{\circ}{\sim}150^{\circ}E$) near the Equator. Cluster, type B can be regarded as a major track due to the fact that its frequency is approximately about 25.4% out of 197 events and its direct association with strong positive rainfall anomalies.

최근 빈번하게 발생하는 태풍사상은 극심한 홍수 및 바람 재해를 유발 시키고 있다. 이러한 점에서 본 연구에서는 1951년부터 2012년까지 한반도에 내습한 총 197개의 태풍사상을 대상으로 태풍의 발생위치 및 태풍의 궤적을 기준으로 태풍을 범주화 할 수 있는 확률론적 클러스터링 기법을 개발하였다. 모의실험을 통하여 개발된 모형의 적합성을 확인할 수 있었으며, 태풍 경로에 적용이 가능한 방안으로 평가되었다. 1951년부터 2012년까지 한반도 내습한 197개의 태풍사상을 대상으로 확률론적 클러스터링 기법을 적용한 결과 한반도를 내습한 태풍사상은 총 7개의 클러스터로 분류되었으며, 대부분 위도 $10^{\circ}{\sim}20^{\circ}N$, 경도 $120^{\circ}{\sim}150^{\circ}E$ 해수면에서 발생하여 한반도를 향하여 진행하는 것으로 나타났다. 클러스터 B의 경우 약 25.4%의 발생빈도를 가지며, 전선의 방향도 한반도를 직접 향하고 있어 상대적으로 한반도에 영향이 가장 큰 클러스터로 분석되었으며 한반도 전체에 걸쳐서 강한 양(positive)의 강우량 Anomaly를 갖는 것을 확인할 수 있었다.

Keywords

References

  1. Back, H.J., Kwon, W.T., and Oh, J.H. (1999) Occurred in the western North Pacific climatological characterstics of a strong typhoon. Korea Water Resources Association annual Meeting, pp. 177-182.
  2. Blender, R., Fraedrich, K., and Lunkeit, F. (1997). "Identification if cyclone-track regimes in the north atlantic." Journal of The Royal Meteological Society, Vol. 123n No. 539, pp. 727-741. https://doi.org/10.1002/qj.49712353910
  3. Camargo, S.J., Robertson, A.W., Gaffney, S.J., Smyth, P., and Ghil, M. (2007). "Cluster analysis of typhoon track. Part I: General properties" Journal of Climate, Vol. 20, No. 20, pp. 3635-3653. https://doi.org/10.1175/JCLI4188.1
  4. Dimego, G.J., and Bosart, L.F. (1982). "The transformation of tropical storm agens into an extratropical cyclone. Park II: Moisture, Vorticity and Kinetic Energy Budget." Monthly Weather Review, Vol. 110, No. 5, pp. 412-433. https://doi.org/10.1175/1520-0493(1982)110<0412:TTOTSA>2.0.CO;2
  5. Elsner, J.B. (2003). "Tracking Hurricanes." Bulletin of the American Meteorological Society, Vol. 84, No. 3, pp. 353-356. https://doi.org/10.1175/BAMS-84-3-353
  6. Elsner, J.B., and Liu, K.B. (2003) "Examining the ENSOtyphoon hypothesis." Journal of Climate Research, Vol. 25, pp. 43-54. https://doi.org/10.3354/cr025043
  7. Emanuel, K., Sundararajan, E., and Willians, J. (2008). "Hurricanes and global warming: results from downscaling IPCC AR4 simulations." Journal of American Meteorological Society, Vol. 89, No. 3, pp. 347-367. https://doi.org/10.1175/BAMS-89-3-347
  8. Faraway, J., and Chatfield, C. (1998). "Time series forecasting with neural networks: a comparative study using the airline data." Journal of The Royal Statistical Society, Vol. 47, No.2 pp. 231-250.
  9. Gaffney, S.J. (2004). Probabilistic curve-aligned clustering and prediction with regression mixture models. Ph. D. dissertation, University of California, Irvine, CA 281.
  10. Harr, P.A., and Elsberry, R.L. (1995). "Large-scale circulation variability over the tropical western north pacific. Part I: Spatial Patterns and Tropical cyclone characteristics." Monthly Weather Review, Vol. 123, No, 5, pp. 1225-1246. https://doi.org/10.1175/1520-0493(1995)123<1225:LSCVOT>2.0.CO;2
  11. Jeong, D.-M., and Bae, D.-H. (2004). "Monthly dam inflow forecasts by using weather forecasting information." Journal of Korean Water Resources Association, Vol. 37, No. 6, pp. 449-460. https://doi.org/10.3741/JKWRA.2004.37.6.449
  12. Kim, H.-S., Kim, J.-H., Ho, C.-H., and Chu, P.-H. (2011). "Pattern classification of typhoon tracks using the fuzzy c-means clustering method." Journal of Climate, Vol. 24, No. 2, pp.488-508. https://doi.org/10.1175/2010JCLI3751.1
  13. Kim, K.-H., Choi, W.-Y., and Oh, S.-K. (2013). "Design of summer very short-term precipitation forecasting pattern in metropolitan area using optimized RBFNNs." Journal of Korean Institute of Intelligent Systems, Vol. 23, No. 6, pp. 533-538. https://doi.org/10.5391/JKIIS.2013.23.6.533
  14. Kim, S.-U., and Lee, K.-S. (2008). "Regional low flow frequency analysis using bayesian multiple regression." Journal of Korean Water Resources Association, Vol. 41, No. 3, pp. 325-340. https://doi.org/10.3741/JKWRA.2008.41.3.325
  15. Knutson, T.R., Mcbride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J.P., Srivastava, A.K., and Sugi, M. (2010). "Tropical cyclones and climate change." Nature Geoscience, Vol. 3, pp. 157-163. https://doi.org/10.1038/ngeo779
  16. Korea Meteorological Administration. (2011) "Typhoon White Paper."
  17. Kwon, H.-H., Kim, T.-J. Hwang, S.-H., and Kim, T.-W. (2013). "Development of daily rainfall simulation model based on homogeneous hidden markov chain." Journal of Korean Society of Civil Engineer, Vol. 33, No. 5, pp. 1861-1870. https://doi.org/10.12652/Ksce.2013.33.5.1861
  18. Lee, C.-R. (2001). A study on meteorological disasters in Korea. Master's thesis, University of KyungHee, Seoul, Korea.
  19. Lee, D.-K., Jang, D.-E., and Wee, T.-K. (1992). "Typhoon approaching Korea, 1960-1989 part I: Statistics and synoptic overview." Journal of Atmospheric Sciences, Vol. 28, No 2, pp. 133-147.
  20. Lee, J.-J., and Kwon, H.-H. (2011). "Analysis on spatiotemporal pattern and regionalization of extreme rainfall data." Journal of Korean Society of Civil Engineer, Vol. 31, No. 1B, pp. 13-20.
  21. Oh, T.-S., and Moon, Y.-I. (2008). "Special quality analysis of extreme rainfall by typhoon." Journal of Korean Society of Civil Engineer, Vol. 28, No. 5B, pp. 459-473.
  22. Oh, T.-S., Moon, Y.-I., and Ahn, J.-H. (2007). "A study on special quality of hourly precipitation of typhoon happened in Korea." Journal of Korean Water Resources Association, Vol. 40, No. 9, pp. 709-722. https://doi.org/10.3741/JKWRA.2007.40.9.709
  23. Oh, T.-S., Moon, Y.-I., Chun, S.-Y., and Kwon, H.-H. (2009). "Evaluation of extreme rainfall based on typhoon using nonparametric monte carlo simulation and locally weighted polynomial regression." Journal of Korean Society of Civil Engineer, Vol. 29, No. 2B, pp. 193-205.
  24. Park, J.-K., Kim, B.-S., Jung, W.-S., Kim, E.-B., and Lee, D.-G. (2006). "Change in statistical characteristics of typhoon affecting the korean peninsula." Journal of Korean Atmosphere Association, Vol. 16, No. 1, pp. 1-17.
  25. Scheffner, N., Borgman, L., and Mark, D. (1996). "Empirical simulation technique based storm surge frequency analyses." Journal of Waterway, Port, Coastal, Ocean Engineer, Vol. 122, No. 2, pp. 93-101. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:2(93)
  26. Yang, Y., and Zou, H. (2004). "Combining time series models for forecasting." Journal of Forecasting, Vol. 20, No. 1, pp. 69-84. https://doi.org/10.1016/S0169-2070(03)00004-9
  27. Yoo, S.-A., and Jeong, J.-S. (2000). "A study on Typhoons affect the peninsula in 2000." Korean Meteorogical Society Fall Meeting, Vol. 2000. pp. 302-304.

Cited by

  1. Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea vol.48, pp.6, 2015, https://doi.org/10.3741/JKWRA.2015.48.6.463
  2. Development of Stochastic Downscaling Method for Rainfall Data Using GCM vol.47, pp.9, 2014, https://doi.org/10.3741/JKWRA.2014.47.9.825