• Title/Summary/Keyword: towing mode

Search Result 11, Processing Time 0.033 seconds

Development of Desk top Tug-barge Simulator and Evaluation Module

  • Jeong, Tae-Gwoen;Song, Chae-Uk;Chen, Chao;Lee, Shin-Geol;Lee, Jeong-Jin
    • Journal of Navigation and Port Research
    • /
    • v.35 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • This paper is a part of the development on the safe navigation model of tugs and barges in Korea waters. desk-top tug-barge simulator is to train the crew of tugs and barges, especially tugs' crew. It is connected with steering and engine telegraph console and winch control console, and can describe three types of operation mode for a tug-barge working unit, towing mode, side by side and push mode. It can also record and assess each simulation run. The evaluation module can confirm the result of a finished simulation run and help trainees to find and correct their faults, and it is composed of result evaluation and process evaluation.

Analysis of Load Input to Vehicle Body Due to Diversification of Environment of Towing Device (견인 장치 사용 환경 다양화에 따른 차체 입력하중 분석)

  • Choi, Jaesung
    • Journal of Applied Reliability
    • /
    • v.18 no.1
    • /
    • pp.40-48
    • /
    • 2018
  • Purpose: This research is to develop Trailer Durability Test of towing device, in order to cover usage conditions of bike type as well as general type trailer. With the diversification of leisure activities, the population that enjoys various sports and leisure has increased rapidly, and the number of vehicles equipped with camping trailers and bike carriers is also increasing steadily. The purpose of this study is to develop a durable vehicle that has no problem in various customer conditions. Methods: We measured the input load under various conditions of the user by attaching load cell to the body fixing part and towing ball of the towing device. The load in various modes was measured, and the difference between the trailer and the bike carrier type was compared and analyzed. Results: Due to the difference in fixing method and weight between the two types, the trailer has a large longitudinal force and the bike type has a large vertical force. Therefore, it is necessary to durability test method capable of satisfying all longitudinal force and vertical force. Conclusion: We improved the durability test of the towing device by changing the test surface. The new mode has made it possible to shorten the durability test schedule by increasing test efficiency.

A study on the resistance affecting on the engine power in towing fishing gear of a bottom trawl ship (저층 트롤선의 예망 시 기관출력에 영향을 미치는 저항들에 관한 고찰)

  • Woo-Gyeong WANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.4
    • /
    • pp.344-353
    • /
    • 2023
  • In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.

System Identification and Pitch Control of a Planing Hull Ship with a Controllable Stern Intercepter (능동제어가 가능한 선미 인터셉터가 부착된 활주선형 선박의 시스템 식별과 자세 제어에 관한 연구)

  • Choi, Hujae;Park, Jongyong;Kim, Dongjin;Kim, Sunyoung;Lee, Jooho;Ahn, Jinhyeong;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.401-414
    • /
    • 2018
  • Planing hull type ships are often equipped with interceptor or trim tab to improve the excessive trim angle which leads to poor resistance and sea keeping performances. The purpose of this study is to design a controller to control the attitude of the ship by controllable stern interceptor and validate the effectiveness of the attitude control by the towing tank test. Embedded controller, servo motor and controllable stern interceptor system were equipped with planing hull type model ship. Prior to designing the control algorithm, a model test was performed to identify the system dynamic model of the planing hull type ship including the stern interceptor. The matrix components of model were optimized by Genetic Algorithm. Using the identified model, PID controller which is a classical controller and sliding mode controller which is a nonlinear robust controller were designed. Gain tuning of the controllers and running simulation was conducted before the towing tank test. Inserting the designed control algorithm into the embedded controller of the model ship, the effectiveness of the active control of the stern interceptor was validated by towing tank test. In still water test with small disturbance, the sliding mode controller showed better performance of canceling the disturbance and the steady-state control performance than the PID controller.

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

Report of Wave Glider Detecting by KOMPSAT-5 Spotlight Mode SAR Image (KOMPSAT-5 Spotlight Mode SAR 영상을 이용한 웨이브글라이더 탐지 사례 보고)

  • Lee, Yoon-Kyung;Kim, Sang-Wan;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.431-437
    • /
    • 2018
  • We analyzed the feasibility of detecting wave gliders moving on the sea surface using SAR images. For the experiment, a model was constructed and placed on the sea using a towing ship before and after the satellite observation time. In the acquisition of KOMPSAT-5 image, high resolution SAR data of spotlight mode was collected considering the small size of wave glider. As a result of the backscattering intensity analysis around the towing ship along with wave glider, several scattering points away from the ship were observed, which are not strong but clearly distinguished from the surrounding clutter values. Considering the distance from the center of the ship, it seems to be a signal by the wave glider. On the other hand, it is confirmed that the wave glider can be detected even at the very low false alarm rate ($10^{-6}$) of the target detection using CFAR. Although the scatter signal by the wave glider could be distinguished from the surrounding ocean clutter in the high resolution SAR image, further research is needed to determine if actual wave gliders are detected in various marine environments.

A Study on the Embodiment of a Transfer Case with High-Speed Reduction of the Planetary Gear Type Applied to Big Industrial Vehicles (대형 산업 차량에 적용되는 유성기어형 고감속 중간변속기 구현에 관한 연구)

  • Lee, Won-Kyu;Park, Se-Myoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.14-20
    • /
    • 2015
  • A high-speed reduction transfer case is usually employed by an excavator, wheel loader, or bulldozer. When powerful torque is required in the case of climbing steep roads or towing heavy equipment, the high-speed reduction mode of the gearbox is used. Generally, a transfer case using a spur gear type with a speed reduction system has a speed reduction ratio of 1 to 1 or 2 to 1. However, the structure of a transfer case achieved at a high speed of 1 to 1 and a low speed of 4.5 or under 5.5 to 1 with the speed reduction by use of a planetary gear type with a speed reduction system was proposed in this study. By employing a planetary gear type with a speed reduction system, the compact structure of the transfer case was achieved, and the impact or the partial defect of gear teeth was eliminated.

Design, Implementation and Navigation Test of Manta-type Unmanned Underwater Vehicle

  • Kim, Joon-Young;Ko, Sung-Hyub;Cho, So-Hyung;Lee, Seung-Keon;Sohn, Kyoung-Ho
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.192-197
    • /
    • 2011
  • This paper describes the mathematical modeling, control algorithm, system design, hardware implementation and experimental test of a Manta-type Unmanned Underwater Vehicle (MUUV). The vehicle has one thruster for longitudinal propulsion, one rudder for heading angle control and two elevators for depth control. It is equipped with a pressure sensor for measuring water depth and Doppler Velocity Log for measuring position and angle. The vehicle is controlled by an on-board PC, which runs with the Windows XP operating system. The dynamic model of 6DOF is derived including the hydrodynamic forces and moments acting on the vehicle, while the hydrodynamic coefficients related to the forces and moments are obtained from experiments or estimated numerically. We also utilized the values obtained from PMM (Planar Motion Mechanism) tests found in the previous publications for numerical simulations. Various controllers such as PID, Sliding mode, Fuzzy and $H{\infty}$ are designed for depth and heading angle control in order to compare the performance of each controller based on simulation. In addition, experimental tests are carried out in a towing tank for depth keeping and heading angle tracking.

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.

Vortex induced vibration of circular pipes; the experiment in a water tank (원형 세장 실린더의 와 유기 진동;수조 실험 결과)

  • Kim, Yang-Hann;Park, Joo-Bae;Hong, Sup;Choi, Yoon-Rak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.478-483
    • /
    • 2001
  • We experimentally attempted to understand the vibration characteristics of a flexible pipe excited by vortex shedding. This has been extensively studied in the past decades (For example, see [2-9]). However, there are still areas that need more study. One of them is to study the relation between spatial characteristics of a flow induced vibrating pipe, such as its length, the distribution of wave number, and frequency responses. A non-linear mechanism between the responses of in-line and cross-flow directions is also an area of interests, if the pipe is relatively long so that structural modal density is reasonably high. In order to investigate such areas, two kinds of instrumented pipe were designed. The instrumented pipes, of which the lengths are equally 6m, are wound with rubber and silicon tape in different ways, having different vortex shedding conditions. One has uniform cross-section of diameter of 26. 7mm, and the other has equally spaced by 4 sub-sections, which are composed of different diameters of 75.9, 61.1, 45.6 and 26.7mm. Both pipes are towed in a water tank (200m ${\times}$ 16m ${\times}$ 7m) so that they experienced different vortex shedding excitations. The towing pipe experiments exhibit several valuable features. One of them is that the natural frequencies and their corresponding strain mode shapes dominate the strain response of the uniform pipe. However, for those of non-uniform pipe, the responses are more likely local and many modes participate in it.

  • PDF