• Title/Summary/Keyword: total wood volume

Search Result 43, Processing Time 0.02 seconds

Total Wood Volume Equations for Tectona Grandis Linn F. Stands in Gujarat, India

  • Tewari, Vindhya Prasad;Singh, Bilas
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.4
    • /
    • pp.313-320
    • /
    • 2018
  • Tectona grandis (teak) is one of the most important timber species worldwide and India is one of the major teak growing countries. Though some volume equations were developed for teak in India but the models developed were neither evaluated using robust statistical criteria nor validated. Hence, the objective of this study was to develop statistically tested appropriate volume equation to predict total wood volume (over- and under-bark) for teak trees in Gujarat. A total of 41 trees with age varying from 15 to 33 years and diameter at breast height (dbh) from 7.3 to 30.8 cm were felled for the purpose. Linear and non-linear equations were used to model the relationship of the total wood volume with respect to dbh and total height. The equations tested mostly fitted well to the data. Model evaluation and validation indicated that models should be calibrated with local data for greater accuracy in the prediction.

Enzymatic hydrolysis and micro-structure of ozone treated wood meal (오존 처리에 의한 목재 세포벽의 미세구조변화와 효소가수분해)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • Pine (Pinus densiflora) and aspen (Populus euramericana) wood meals were treated with ozone at various time schedule in acidic condition. The lignin contents and surface area of the ozone treated wood meals were determined and the enzymatic hydrolysis rate of ozonated wood meals was evaluated. The feasibility of enzymatic hydrolysis of the ozone treated wood meal was obviously influenced with the degree of delignification. After ozone treatment of wood meal for 10min, total pore volume were slightly increased in the surface of wood meal. When wood meals were treated with ozone longer than 10min, few change in the pore volume was observed. However, the area of over $50{\AA}$ of pore size is increased with ozonation time. As a conclusion, the rate of enzymatic hydrolysis of wood is more effective with the pore size distribution than the total pore volume.

Nitrogen Adsorption Analysis of Wood Saccharification Residues

  • Yang, Han-Seung;Tze, William Tai Yin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.232-242
    • /
    • 2017
  • The objective of this study was to examine changes in the porosity and internal structure of wood as it goes through the process of saccharification (extraction of fermentable sugars). This study also examined the use of different drying methods to prepare samples for characterization of internal pores, with particular emphasis on the partially disrupted cell wall. Aspen wood flour samples after dilute acid pretreatment followed by enzymatic hydrolysis were examined for nitrogen adsorption. The resulting isotherms were analyzed for surface area, pore size distribution, and total pore volume. Results showed that freeze drying (with sample pre-freezing) maintains the cell wall structure, allowing for examination of saccharification effects. Acid pretreatment (hemicellulose removal) doubled the surface area and tripled the total volume of pores, which were mostly 10-20 nm wide. Subsequent enzymatic hydrolysis (cellulose removal) caused a 5-fold increase in the surface area and a ~ 11-fold increase in the total volume of pores, which ranged from 5 to 100 nm in width. These results indicate that nitrogen adsorption analysis is a feasible technique to examine the internal pore structure of lignocellulosic residues after saccharification. The information on the pore structure will be useful when considering value-adding options for utilizing the solid waste for biofuel production.

Estimation of Merchantable Volume Ratio by Major Species (주요 수종별 재적의 상업적 이용율 추정)

  • Son, Yeong Mo;Kang, Jin Taek;Won, Hyun Kyu;Jeon, Ju Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.330-335
    • /
    • 2016
  • This study was conducted to derive merchantable volume ratio for 5 major species such as Pinus Densiflora (Central Region). The data used for this study was from at least more than 1,300 trees of research data throughout the country. the study applied two estimation equations, which were the estimation equation for wood volume ratio representing total wood volume to total tree stem volume and the estimation equation for merchantability representing ratio of merchantable volume to total wood volume. The merchantable volume ratio was derived by multiplying those two estimation equations. In order to gain wood volume ratio(W) from DBH, $W=\frac{a_1}{1+a_2/D}+\frac{b_1}{1+b_2/D}$ model was used. Fitness index of it was more than 99% by species, and other test statistics also indicated the suitability of this equation enough. Merchantability (M) for wood volume applied $M=e^{a_1\(\frac{d}{D}\)^{a_2}}-(b_0+b_1D+b_2D^2+b_3D^3)$ model and fitness index was more than 96% by species. Merchantable volume ratio was assessed using those two estimation equations by each 5 species, and constructed a merchantable volume ratio table. In result, merchuntable volume ratio was little difference between stand types, but there was slightly different with the existing standard such as conifers of 85% and non-conifers of 70%.

Adsorption Characteristics of Charcoals of Major Korean Wood Species and Wood-based Materials (국산 주요 수종 및 목질재료 탄화물의 흡착 특성)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.33-40
    • /
    • 2002
  • This research was to investigate the adsorption characteristics of charcoals of major Korean wood species (thinned trees) and wood-based materials. As carbonization time and temperature increased, methylene-blue adsorption (MBA) of charcoals of thinned trees and wood-based materials increased. Pinus koraiensis charcoal showed the highest MBA. MBA of softwoods was higher than that of hardwoods. There was a negative correlation between air-dried specific gravity before carbonization and MBA of carbonized thinned trees. The MBA of wood-based materials showed similar value, but wood-based materials in MBA was lower than thinned woods. Surface area and total pore volume of thinned trees and wood-based materials increased as carbonization temperature increased. The species showing highest MBA appeared to have the highest surface area at the carbonization temperature of 600℃ as well. There was a positive correlation between surface area, total pore volume and MBA of charcoals. The charcoal of wood-based materials generally exhibited micro pores.

Outlook of the timber supply to the wood industry buildup master plan (목재산업진흥 종합계획에 따른 목재공급 전망)

  • Lee, Sang-Min;Kim, Kyeong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1715-1724
    • /
    • 2015
  • This study assessed the long term structure of forest age groups and the possibility of a domestic wood supply based on the wood industry buildup master plan. Wood is assumed to be supplied by main cutting, renewal, cutting damaged trees and thinning. The cohort equation was applied to identify the dynamic changes in forest area according to the age groups. The sixth age group, which composed of only 7.7% in 2010, is expected to comprise 73% of the total production land. The area distributions of the other age groups are expected to be between 5.3 - 5.6%. Consequently, the production volume from main cutting accounts for approximately 93 - 95% of the total production. The production volume from thinning, which depends on the area of the second and third age groups, will be decreased gradually. When the volume of domestic timber supply was compared with the timber demand from a previous study, the self-sufficiency of timber demand will be approximately 83% in 2050.

Energy Efficiency of Fluidized Bed Drying for Wood Particles

  • Park, Yonggun;Chang, Yoon-Seong;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Jang, Soo-Kyeong;Choi, In-Gyu;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.821-827
    • /
    • 2016
  • This study evaluates the economic feasibility of industrializing fluidized bed dryer for wood particles. The theoretically required heat energy and energy efficiency were evaluated using a pilot scale fluidized bed dryer. When Mongolian Oak wood particles with 50% initial moisture content were dried in the fluidized bed dryer with air of $70^{\circ}C$ air circulating at 1.1-1.3 m/s for 30 minutes, the total theoretically required heat energy was 2,177 kJ. Of this, 1,763 kJ (approximately 81.0%) was used to heat the air flowing in from outside the dryer and 386 kJ (approximately 17.7%) was used to heat and remove water from the wood particles. Actual energy consumed was 7,560 kJ, giving energy efficiency of 28.8%. Thus, to industrialize a drying method such as fluidized bed drying, where the dryer volume is significantly larger than the volume of wood particles, it is necessary to minimize energy loss and maximize energy efficiency by designing the dryer size considering the amount of wood particles and choosing a suitable air circulation rate.

A Study on Combustion Characteristics of Fire Retardant Treated Pinus Densiflora and Pinus Koraiensis (난연처리된 소나무와 잣나무의 연소특성 연구)

  • Choi, Jung-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.244-251
    • /
    • 2011
  • The combustion characteristics were evaluated for Japanese Red Pine (Pinus Densiflora) and Korean Pine (Pinus Koraensis). These two species are widely used as building member of Korea-style house and volume density of Japanese Red Pine is relatively higher than that of Korean Pine. The combustion characteristics are closely connected with volume density. The differences of two species in both total heat release (THR) and average heat release rate (HRR) seemed to be resulted from the volume density. Toxicity of smoke from the specimens was increased because of fire-retardant treatment.

Some Physical and Chemical Properties of Carbonized Wood Wastes(II)

  • Kim, Byung-Ro;Mishiro, Akiyoshi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.6-15
    • /
    • 1998
  • A total of forty five-ply, 30- by 30-cm lauan and larch plywood sheets were manufactured in the laboratory using commercial urea and phenol resin adhesives; half of these sheets were treated with fresh concrete. Each sheet was carbonized for 2, 4, and 6hours at $400^{\circ}C$, $600^{\circ}C$, and $750^{\circ}C$, respectively, and their physical properties were measured. The yie1d of charcoal decreased as carbonization temperature and time increased. Charcoal yield was greater in plywood than in veneer, and slightly greater in plywood treated with concrete compared to untreated plywood. Plywood manufactured with phenol resin adhesive had higher pH, higher equilibrium moisture content (EMC), and greater adsorption of methylene-blue dye compared to plywood manufactured with urea resin. For concrete-treated plywood, pH was greater than 10 even when the sheets were carbonized for 2hours at $400^{\circ}C$. Although the EMC of the phenol resin plywood was higher than that of the urea resin plywood, EMC of the phenol resin was lower than that of the urea resin. The larch phenol resin plywood that was carbonized for 6 hours at $750^{\circ}C$ adsorbed more methylene-blue than did the commercia1 wood-based activated charcoal as a result of total pore volume and surface area.

  • PDF

Assessment of Timber Harvest in Tropical Rainforest Ecosystem of South West Nigeria and Its Implication on Carbon Sequestration

  • Adekunle, Victor A.;Lawal, Amadu;Olagoke, Adewole O.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Timber harvest in natural forests and its implications on carbon sequestration were investigated in the Southwestern Nigeria. Data on timber harvest from forest estates for a 3-year period were collected from the official record of States' Forestry Department. The data registered the species, volume and number of timbers exploited during the study period. The data were analyzed accordingly for rate of timber harvest and carbon value of the exploited timbers using existing biomass functions. Values were compared for significant differences among states using one way analysis of variance. The results showed that the most exploited logs, in terms of volume and number of trees, have the highest amount of carbon removal. There was a variation in type of timber species being exploited from each state. The total number of harvested trees from Oyo, Ondo, Ogun, Ekiti and Osun were estimated at 100,205; 111,789; 753; 15,884 and 18,153 respectively. Total quantity of carbon removed for the 3-year period stood at 2.3 million metric tons, and this translated to 8.4 million metric tons of $CO_2$. The annual carbon and $CO_2$ removal therefore were estimated at 760,120.73 tons and 2.8 million tons/ year respectively. There were significant differences (p<0.05) in the amount of $CO_2$ removed from the five states. Based on our result, we inferred that there is increasing pressure on economic tree species and it is plausible that they are becoming scarce from the forests in Southwestern Nigeria.. If the present rate of log removal is not controlled, forests could become carbon source rather than carbon sink and the on biological conservation, wood availability and climate change may turn out grave. For the forest to perform its environmental role as carbon sink, urgent conservation measures and logging policies are needed to be put in place.