• Title/Summary/Keyword: total truncation error

Search Result 5, Processing Time 0.043 seconds

Simulation of Voltage and Current Distributions in Transmission Lines Using State Variables and Exponential Approximation

  • Dan-Klang, Panuwat;Leelarasmee, Ekachai
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • A new method for simulating voltage and current distributions in transmission lines is described. It gives the time domain solution of the terminal voltage and current as well as their line distributions. This is achieved by treating voltage and current distributions as distributed state variables (DSVs) and turning the transmission line equation into an ordinary differential equation. Thus the transmission line is treated like other lumped dynamic components, such as capacitors. Using backward differentiation formulae for time discretization, the DSV transmission line component is converted to a simple time domain companion model, from which its local truncation error can be derived. As the voltage and current distributions get more complicated with time, a new piecewise exponential with controllable accuracy is invented. A segmentation algorithm is also devised so that the line is dynamically bisected to guarantee that the total piecewise exponential error is a small fraction of the local truncation error. Using this approach, the user can see the line voltage and current at any point and time freely without explicitly segmenting the line before starting the simulation.

  • PDF

NUMERICAL METHOD FOR A 2NTH-ORDER BOUNDARY VALUE PROBLEM

  • Xu, Chenmei;Jian, Shuai;Wang, Bo
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.715-725
    • /
    • 2013
  • In this paper, a finite difference scheme for a two-point boundary value problem of 2nth-order ordinary differential equations is presented. The convergence and uniqueness of the solution for the scheme are proved by means of theories on matrix eigenvalues and norm. Numerical examples show that our method is very simple and effective, and that this method can be used effectively for other types of boundary value problems.

Numerical Solution of Nonlinear Diffusion in One Dimensional Porous Medium Using Hybrid SOR Method

  • Jackel Vui Lung, Chew;Elayaraja, Aruchunan;Andang, Sunarto;Jumat, Sulaiman
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.699-713
    • /
    • 2022
  • This paper proposes a hybrid successive over-relaxation iterative method for the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The considered mathematical model is discretized using a computational complexity reduction scheme called half-sweep finite differences. The local truncation error and the analysis of the stability of the scheme are discussed. The proposed iterative method, which uses explicit group technique and modified successive over-relaxation, is formulated systematically. This method improves the efficiency of obtaining the solution in terms of total iterations and program elapsed time. The accuracy of the proposed method, which is measured using the magnitude of absolute errors, is promising. Numerical convergence tests of the proposed method are also provided. Some numerical experiments are delivered using initial-boundary value problems to show the superiority of the proposed method against some existing numerical methods.

How to incorporate human failure event recovery into minimal cut set generation stage for efficient probabilistic safety assessments of nuclear power plants

  • Jung, Woo Sik;Park, Seong Kyu;Weglian, John E.;Riley, Jeff
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.110-116
    • /
    • 2022
  • Human failure event (HFE) dependency analysis is a part of human reliability analysis (HRA). For efficient HFE dependency analysis, a maximum number of minimal cut sets (MCSs) that have HFE combinations are generated from the fault trees for the probabilistic safety assessment (PSA) of nuclear power plants (NPPs). After collecting potential HFE combinations, dependency levels of subsequent HFEs on the preceding HFEs in each MCS are analyzed and assigned as conditional probabilities. Then, HFE recovery is performed to reflect these conditional probabilities in MCSs by modifying MCSs. Inappropriate HFE dependency analysis and HFE recovery might lead to an inaccurate core damage frequency (CDF). Using the above process, HFE recovery is performed on MCSs that are generated with a non-zero truncation limit, where many MCSs that have HFE combinations are truncated. As a result, the resultant CDF might be underestimated. In this paper, a new method is suggested to incorporate HFE recovery into the MCS generation stage. Compared to the current approach with a separate HFE recovery after MCS generation, this new method can (1) reduce the total time and burden for MCS generation and HFE recovery, (2) prevent the truncation of MCSs that have dependent HFEs, and (3) avoid CDF underestimation. This new method is a simple but very effective means of performing MCS generation and HFE recovery simultaneously and improving CDF accuracy. The effectiveness and strength of the new method are clearly demonstrated and discussed with fault trees and HFE combinations that have joint probabilities.

Buckling analysis of noncontinuous linear and quadratic axially graded Euler beam subjected to axial span-load in the presence of shear layer

  • Heydari, Abbas
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.397-416
    • /
    • 2020
  • Functionally graded material (FGM) illustrates a novel class of composites that consists of a graded pattern of material composition. FGM is engineered to have a continuously varying spatial composition profile. Current work focused on buckling analysis of beam made of stepwise linear and quadratic graded material in axial direction subjected to axial span-load with piecewise function and rested on shear layer based on classical beam theory. The various boundary and natural conditions including simply supported (S-S), pinned - clamped (P-C), axial hinge - pinned (AH-P), axial hinge - clamped (AH-C), pinned - shear hinge (P-SHH), pinned - shear force released (P-SHR), axial hinge - shear force released (AH-SHR) and axial hinge - shear hinge (AH-SHH) are considered. To the best of the author's knowledge, buckling behavior of this kind of Euler-Bernoulli beams has not been studied yet. The equilibrium differential equation is derived by minimizing total potential energy via variational calculus and solved analytically. The boundary conditions, natural conditions and deformation continuity at concentrated load insertion point are expressed in matrix form and nontrivial solution is employed to calculate first buckling loads and corresponding mode shapes. By increasing truncation order, the relative error reduction and convergence of solution are observed. Fast convergence and good compatibility with various conditions are advantages of the proposed method. A MATLAB code is provided in appendix to employ the numerical procedure based on proposed method.