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Abstract. This paper proposes a hybrid successive over-relaxation iterative method for

the numerical solution of a nonlinear diffusion in a one-dimensional porous medium. The

considered mathematical model is discretized using a computational complexity reduction

scheme called half-sweep finite differences. The local truncation error and the analysis

of the stability of the scheme are discussed. The proposed iterative method, which uses

explicit group technique and modified successive over-relaxation, is formulated system-

atically. This method improves the efficiency of obtaining the solution in terms of total

iterations and program elapsed time. The accuracy of the proposed method, which is mea-

sured using the magnitude of absolute errors, is promising. Numerical convergence tests of
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the proposed method are also provided. Some numerical experiments are delivered using

initial-boundary value problems to show the superiority of the proposed method against

some existing numerical methods.

1. Introduction

Nonlinear partial differential equations (NPDE) exist in various pure and ap-
plied fields. Different types of NPDE have been introduced to the literature to
support research on complex physical phenomena. One such equation is called the
porous medium equation (PME). PMEs can describe the nonlinear diffusion process
in a one-dimensional porous mediums. For instance, it describes the water-oil in-
stability phenomenon where water is injected into an injection well in order to push
oil towards the production well [4]. Besides that, PMEs play an important role in
the mathematical modelling of the water coning phenomenon in oil reservoirs [16].
The exact solutions of PMEs provide a genuine understanding of the qualitative
features of these physical phenomena. Although many exact solutions of PMEs
are proposed, few exact solutions give clear meaning to the physical phenomena,
which can be used as test examples to verify the accuracy and efficiency of various
numerical methods. In some cases, when the modelled PME is difficult to solve by
using analytical methods, numerical methods become the alternative way to obtain
the solution.

Many different schemes for solving PME have been developed to achieve ei-
ther a high degree of accuracy or of efficiency. In [11] the authors designed two
high degree accuracy finite difference schemes: the sixth and eighth-order weighted
essentially non-oscillatory schemes. A linear multi-step approach in their mixed
weighted with non-oscillatory finite difference scheme was then introduced in [2].
In [8], an adaptive time mesh technique to formulate a finite difference approxima-
tion to solve the PME blow-up problem was proposed. In another article, [13], an
explicit finite difference scheme to solve the PME model of interface tracking and
hole filling was given. Furthermore, in [7] the authors initiated the application of
the half-sweep finite difference (HSFD) scheme of [1] for constructing a family of
efficient iterative methods for PMEs. In the present paper, we aim to extend the
application of HSFD by developing a new efficient iterative method. Due to the
capability of HSFD to reduce the computational complexity of solving a large-sized
system of algebraic equations, the HSFD has been applied to solve linear PDEs
[12, 17], fuzzy PDEs [3] and fractional PDEs [14, 18]. All reported results were
promising for linear problems and motivated the present research to investigate an
efficient iterative method based on HSFD to solve nonlinear problems.

This paper extends the previous work [7] by proposing a new hybrid type of suc-
cessive over-relaxation (SOR) iterative method to solve PME. The local truncation
error of the HSFD scheme is investigated to show the consistency of the approxi-
mation. The stability of the HSFD scheme is analyzed to determine the stability
condition. The proposed iterative method, which uses the explicit group technique
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[9] and modified SOR iteration [10], is formulated using the HSFD approximation
equation. The numerical experiment is delivered using two initial-boundary value
problems to show the efficiency and accuracy of the proposed method. The next
section discusses the concept and derivation of HSFD approximation to a PME.

2. Numerical Method

2.1 HSFD approximation to PME

Let a one-dimensional PME be mathematically generalized in the form of

(2.1)
δu

δt
= C

δ

δx
(um δu

δx
),

where C, u(x, t) and um represent the arbitrary constant, the solution, and the non-
linear diffusion term, respectively. The theory and properties of PME are extended
from the theory of the linear diffusion or heat equation [20]. Furthermore, the
fast and slow diffusions in a one-dimensional porous medium can be characterized
based on the range of the value of m. Fast diffusion is characterized by um for
m < 0, while the slow diffusion is characterized by um for m > 0 [21]. The linear
diffusion equation can be obtained by simply setting the value of m to equal zero.
The solution of Eq. 2.1 can be obtained by imposing the following initial-boundary
condition:

(2.2) I(x) = u(x, 0), 0 ≤ x ≤ 1,

and

(2.3) B0(t) = u(0, t), B1(t) = u(1, t), 0 ≤ t ≤ 1,

where I(x), B0(t) and B1(t) are the predetermined functions.
Equation 2.1 can be approximated by the mean of finite differences in its solution

domain. By partitioning the space at ph for p = 0, 1, 2, . . . ,M and h = 1/M , and
time at nk seconds for n = 0, 1, 2, . . . , T and k = 1/T seconds, the solution domain
has M · T mesh points denoted by Up,n = (ph, nk). To discretize Eq. 2.1 using the
implicit finite difference scheme, we firstly apply calculus to derive

(2.4)
δu

δt
= Cum δ2u

δx2
+ Cmum−1

(
δu

δx

)2

.

The partial derivatives in Eq. 2.4 can be approximated using the following finite
differences

(2.5)
δu

δt
≈ Up,n − Up,n−1

k
,

(2.6)
δu

δx
≈ Up+1,n − Up−1,n

2h
,
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and

(2.7)
δ2u

δx2
≈ Up+1,n − 2Up,n + Up−1,n

h2
.

Hence, the implicit approximation equation to PME is written as

Up,n−1 = Up,n − αUm
p,nUp+1,n + 2αUm+1

p,n − αUm
p,nUp−1,n(2.8)

−βmUm−1
p,n U2

p+1,n + 2βmUm−1
p,n Up+1,nUp−1,n − βmUm−1

p,n U2
p−1,n,

where α = Ck/h2, β = Ck/4h2, and p = 1, 2, ...,M − 2,M − 1.
Since the distance between two consecutive points is at a fixed length of h,

Eq. 2.8 can be called the full-sweep finite difference (FSFD) approximation. The
performance of FSFD to solve PMEs was studied in [5, 6], and it was found that
the use of FSFD to solve a large system of equations met with high computational
complexity. Using FSFD causes a high number of iterations which prolongs the
solution program time. The impact becomes more serious when finer mesh sizes or
many mesh points are considered in the computation.

The formulation of the FSFD approximation can be extended to the HSFD by
skipping alternate the mesh points. The distance between two consecutive points
to be approximated increases from h to 2h when doing so. As a result, the mesh
points that need to be computed are grouped into two different indexes: odd and
even index. The even index points are approximated using the HSFD iterative
method, and the odd index points can be computed using the governing equation
derived from implicit finite differences. The use of the HSFD can reduce the number
of iterations and solution program times by 50% compared to the FSFD for linear
problems [1, 12, 17]. A comparison of the FSFD and HSFD frameworks can be seen
in Figure 1.

Referring to Figure 1, HSFD approximations to the partial derivatives in Eq.
2.4 can be derived into

(2.9)
δu

δt
≈ Up,n − Up,n−1

k
,

(2.10)
δu

δx
≈ Up+2,n − Up−2,n

4h
,

and

(2.11)
δ2u

δx2
≈ Up+2,n − 2Up,n + Up−2,n

4h2
.

Thus, the HSFD approximation equation to PME is written as

Up,n−1 = Up,n − αUm
p,nUp+2,n + 2αUm+1

p,n − αUm
p,nUp−2,n(2.12)

−βmUm−1
p,n U2

p+2,n + 2βmUm−1
p,n Up+2,nUp−2,n − βmUm−1

p,n U2
p−2,n,
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Figure 1: The FSFD and HSFD for M mesh points

where α = Ck/4h2, β = Ck/16h2, and p = 2, 4, ...,M − 4,M − 2.

This paper uses Eq. 2.12 to compute even index points and Eq. 2.8 to compute
odd index points at each time level. In addition to HSFD approximation, a hybrid
SOR (HSOR) iterative method is formulated to aid the computation process for
both index points. A system of algebraic equations corresponding to Eq. 2.1 can
be constructed as follows. Let a nonlinear function based on Eq. 2.12 be expressed
as

Fp,n = Up,n − αUm
p,nUp+2,n + 2αUm+1

p,n − αUm
p,nUp−2,n(2.13)

−βmUm−1
p,n U2

p+2,n + 2βmUm−1
p,n Up+2,nUp−2,n − βmUm−1

p,n U2
p−2,n − Up,n−1,

The function shown by Eq. 2.13 approximates the mesh points p = 2, 4, . . . ,M − 2,
while the remaining points, p = 1, 3, . . . ,M−1 are calculated by using the governing
equation based on the implicit scheme. By considering M − 2 mesh points, a large-
sized nonlinear system is formed into

(2.14) F̃ (Ũ) =
(
F2,n(Ũ), F4,n(Ũ), ..., FM−2,n(Ũ)

)T

= 0,

where Ũ = (U2,n, U4,n, ..., UM−2,n).

The nonlinear system shown by Eq. 2.14 can be solved using the Newton
method. First, find the Jacobian matrix from all first-order partial derivatives of
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Eq. 2.13 as follows:

(2.15) F̃ ′(Ũ) =


δF2,n

δU2,n

δF2,n

δU4,n
. . .

δF2,n

δUM−2,n
δF4,n

δU2,n

δF4,n

δU4,n
. . .

δF4,n

δUM−2,n

...
...

...
δFM−2,n

δU2,n

δFM−2,n

δU4,n
. . .

δFM−2,n

δUM−2,n

 ,

where

(2.16)
δFj,n

δUj−2,n
= −αUm

j,n+2βmUm−1
j,n Uj+2,n− 2βmUm−1

j,n Uj−2,n, j = 4, ...,M − 2,

δFj,n

δUj,n
= 1− αmUm−1

j,n Uj+2,n + 2α(m+ 1)Um
j,n − αmUm−1

j,n Uj−2,n(2.17)

−βm(m− 1)Um−2
j,n U2

j+2,n + 2βm(m− 1)Um−2
j,n Uj+2,nUj−2,n

−βm(m− 1)Um−2
j,n U2

j−2,n, j = 2, 4, ...,M − 2,

and

(2.18)
δFj,n

δUj+2,n
= −αUm

j,n−2βmUm−1
j,n Uj+2,n+2βmUm−1

j,n Uj−2,n, j = 2, 4, ...,M−4.

Then, a sparse and large-sized linear system corresponds to Eq. 2.14 can be ex-
pressed as

(2.19) F̃ ′(Ũ)W̃ = −F̃ (Ũ),

where

(2.20) W̃ = Ũ (ℓ+1) − Ũ (ℓ), ℓ = 0, 1, 2, ....

2.2 Local truncation error

In this section, the local truncation error of Eq. 2.12 is investigated by substitut-
ing the coefficient Up,n−1, Up+2,n and Up−2,n with the following Taylor’s expansions:

(2.21) Up,n−1 = Up,n − k
δ

δt
Up,n +

k2

2

δ2

δt2
Up,n + ...,

(2.22) Up+2,n = Up,n + 2h
δ

δx
Up,n + 2h2 δ2

δx2
Up,n + ...,

and

(2.23) Up−2,n = Up,n − 2h
δ

δx
Up,n + 2h2 δ2

δx2
Up,n + ....
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Substituting Eq. 2.21-2.23 into Eq. 2.12 yields

Up,n − αUm
p,n

(
Up,n + 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)
+ 2αUm+1

p,n(2.24)

−αUm
p,n

(
Up,n − 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)

−βmUm−1
p,n

(
Up,n + 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)2

+2βmUm−1
p,n

(
Up,n + 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)

(
Up,n − 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)

−βmUm−1
p,n

(
Up,n − 2h δ

δxUp,n + 2h2 δ2

δx2Up,n + ...
)2

= Up,n − k δ
δtUp,n + k2

2
δ2

δt2Up,n + ...,

and is then simplified into

(2.25)
δ

δt
Up,n +O(k) = CUm

p,n

δ2

δx2
Up,n + CmUm−1

p,n

(
δ

δx
Up,n

)2

+O(h2).

Hence, the local truncation error of Eq. 2.12 is

(2.26) lim
k,h→0

[
O(k) +O(h2)

]
= 0,

which shows that the HSFD scheme is consistent with Eq. 2.1, and the accuracy of
the HSFD approximation is first order in time and second order in space.

2.3 Analysis of stability

In this section, the analysis of the stability of HSFD approximation is made by
using Gerschgorin’s theorem [19] and the following stability theorem is established.

Theorem 2.1. Let Up,n be the numerical approximation to the solution of Eq. 2.1.
Then, the HSFD approximation shown by Eq. 2.12 is unconditionally stable and
has an eigenvalue

(2.27)

⌈
1

1 + λ

⌉
< 1.

Proof. Let the matrix coefficient of the HSFD approximation be expressed in the
form of

(2.28) (I +A)Ũn = Ũn−1 − F̃ (Ũn−1),

where Ũn = (U2,n, U4,n, ..., UM−2,n) and Ũn−1 = (U2,n−1, U4,n−1, ..., UM−2,n−1).
Define the errors ẽn = (e2,n, e4,n, ..., eM−2,n) and ẽn−1 = (e2,n−1, e4,n−1, ..., eM−2,n−1).
Then, we have

(2.29) ẽn = (I +A)−1Iẽn−1.
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We must show that every eigenvalue of the matrix A has a positive real part.
According to Gerschgorin’s theorem, the eigenvalues of the matrix A are located
inside the disks centred at each diagonal entry. The diagonal entry that we have is

Aj,j = 1− αmUm−1
j,n Uj+2,n + 2α(m+ 1)Um

j,n − αmUm−1
j,n Uj−2,n(2.30)

−βm(m− 1)Um−2
j,n U2

j+2,n + 2βm(m− 1)Um−2
j,n Uj+2,nUj−2,n

−βm(m− 1)Um−2
j,n U2

j−2,n > 0,

where α, β > 0 and m ∈ R.
The eigenvalue of the matrix A has a positive real part implies that the matrix

A has an eigenvalue λ if, and only if, (I+A)−1I has an eigenvalue of 1/(1+λ). We
observe that every eigenvalue of the matrix (I + A) has a radius larger than unity
which implies that the matrix (I + A) has an inverse. Therefore, we can conclude
that the eigenvalue 1/(1+λ) is always smaller than 1 which implies that the HSFD
approximation shown by Eq. 2.12 is unconditionally stable. 2

2.4 Derivation of hybrid SOR method

In this section, the proposed HSOR method is derived, and the derivation begins
with the explicit group technique [9]. Let’s consider a general group of four mesh
points as follows: At time level n ≥ 0,

bp cp 0 0
ap+2 bp+2 cp+2 0
0 ap+4 bp+4 cp+4

0 0 ap+6 bp+6




Wp

Wp+2

Wp+4

Wp+6

 =


Rp

Rp+2

Rp+4

Rp+6

 ,(2.31)

where Rp = Fp(Ũ) − apWp−2, Rp+2 = Fp+2(Ũ), Rp+4 = Fp+4(Ũ), and Rp+6 =

Fp+6(Ũ)− cp+6Wp+8. The solution of Eq. 2.31 can be obtained by using
Wp

Wp+2

Wp+4

Wp+6


(ℓ+1)

=


bp cp 0 0

ap+2 bp+2 cp+2 0
0 ap+4 bp+4 cp+4

0 0 ap+6 bp+6


−1 

Rp

Rp+2

Rp+4

Rp+6

 ,(2.32)

where p = 2, 10, ....
The values of the coefficients aj , bj , and cj , j = p, p+2, p+4, and p+6, are varied
at each iteration index. The values are calculated iteratively using the following
equations:

(2.33) aj = −αUm
j,n + 2βmUm−1

j,n Uj+2,n − 2βmUm−1
j,n Uj−2,n, j = 4, ...,M − 2,

bj = 1− αmUm−1
j,n Uj+2,n + 2α(m+ 1)Um

j,n − αmUm−1
j,n Uj−2,n(2.34)

−βm(m− 1)Um−2
j,n U2

j+2,n + 2βm(m− 1)Um−2
j,n Uj+2,nUj−2,n

−βm(m− 1)Um−2
j,n U2

j−2,n, j = 2, 4, ...,M − 2,
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and

(2.35) cj = −αUm
j,n − 2βmUm−1

j,n Uj+2,n + 2βmUm−1
j,n Uj−2,n, j = 2, 4, ...,M − 4.

Then, a relaxation factor ω1 is added to the first four mesh points, and another
relaxation factor ω2 is added to the next four mesh points and continues alternately
for all mesh points in the solution domain. Thus, the HSOR method can be written
as follows: 

Wp

Wp+2

Wp+4

Wp+6


(ℓ+1)

= (1− ω1)


Wp

Wp+2

Wp+4

Wp+6


(ℓ)

(2.36)

+ω1


bp cp 0 0

ap+2 bp+2 cp+2 0
0 ap+4 bp+4 cp+4

0 0 ap+6 bp+6


−1 

Rp

Rp+2

Rp+4

Rp+6

 , p = 2, 18, ...,

and 
Wp

Wp+2

Wp+4

Wp+6


(ℓ+1)

= (1− ω2)


Wp

Wp+2

Wp+4

Wp+6


(ℓ)

(2.37)

+ω2


bp cp 0 0

ap+2 bp+2 cp+2 0
0 ap+4 bp+4 cp+4

0 0 ap+6 bp+6


−1 

Rp

Rp+2

Rp+4

Rp+6

 , p = 10, 26, ...,

where 1 < ω1, ω2 < 2.
The algorithm of the HSOR method to solve PME is shown as follows.

3. Numerical Experiment

In this section, the discussion on the efficiency and accuracy of the proposed
HSOR method is presented using two different initial-boundary value problems: fast
and slow diffusion problems.

Problem 1 [15] A fast diffusion equation problem,

(6.1)
δu

δt
= c

δ

δx
(
1

u2

δu

δx
).

The exact general solution is given by

(6.2) u(x, t) =
1√

2A1x−A2
1t+A2

.
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Algorithm 1 HSOR method

1: Output: Total iterations, elapsed time, and absolute errors.

2: Initialize Ũ
(0)
0 = 1.0, and W̃

(0)
0 = 0;

3: while n ≤ T do
4: Initialize ℓ = 0;

5: while
∣∣∣Ũ (ℓ+1)

n − Ũ
(ℓ)
n

∣∣∣ > 10−10 do

6: while
∣∣∣W̃ (ℓ+1)

n − W̃
(ℓ)
n

∣∣∣ > 10−10 do

7: Compute formula 2.36;
8: Compute formula 2.37;
9: ℓinner ++;

10: end while
11: Ũ

(ℓ+1)
n = Ũ

(ℓ)
n + W̃

(ℓ+1)
n ;

12: ℓ = ℓ+ ℓinner;
13: end while
14: end while

Here we have C = 0.5, A1 = 0.35 and A2 = 1.35.

Problem 2 [21] A slow diffusion equation problem,

(6.3)
δu

δt
=

δ

δx
(u2 δu

δx
).

The exact general solution is

(6.4) u(x, t) =
x+A1

2
√
A2 − t

,

and we choose C = 1, A1 = 1 and A2 = 4.

Table 1a shows the comparison of total iterations and program elapsed time
between the proposed method HSOR, the method from [5] and the method from
[6]. The total iterations are counted based on the sum of both inner and outer loops
(ltotal). The elapsed time (s) is the total time required by the developed simulation
program to finish the iteration process to get the final solution. In Table 1a we see
that HSOR required the least total iterations to obtain the solution. Using the com-
bination of the HSFD scheme, the Newton method, explicit group techniques, and
modified successive over-relaxation, the total iterations can be reduced by 74.55%
compared to the method of [5] and 49.84% compated to the method of [6]. Since
the total iterations are positively correlated to the elapsed time, the HSOR method
is faster than the method of [5] by 75.39% and method of [6] by 60.48%.

Table 1b compares solutions accuracy between the HSOR method, and the
methods of [5] and [6]. The accuracy of the approximate solutions is measured
using the magnitude of absolute errors. The paper uses the following formula to
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calculate the magnitude of absolute errors:

(6.5) ||Emax|| = max
1≤p≤M−1

|U(xp, tn)− u(xp, tn)| ,

where U(xp, tn) and u(xp, tn) are the exact and approximate solutions at the point
(xp, tn), respectively. Table 1b shows an agreement in terms of the accuracy of
the approximate solutions between the three tested numerical methods. Since the
degree of accuracy between HSFD and FSFD approximations is similar, the pro-
posed HSOR method’s numerical convergence is tested for the various step sizes
of h and k. Table 2 shows that the HSOR method is numerically convergent for
spatial steps h = 1/M = 1/256, 1/512, 1/1024, 1/2048, and 1/4096, at time steps
k = 1/T = 1/10, 1/100, 1/1000, and 1/10000, respectively.

Table 3 compares computational complexity between HSOR, and the methods
of [5] and [6]. The computational complexity of the iterative methods are measured
by the number of arithmetic operations per iteration. Table 3 shows that the HSOR
method is much more efficient than the other two methods, because it runs fewer
arithmetic operations per iteration. By using a total of M − 1 mesh points for
the numerical simulation, the HSOR uses six operations of PLUS/MINUS and ten
operations of MULTIPLY/DIVIDE for the entire groups of four points. Subjected
to the boundary conditions, the HSOR uses five operations of PLUS/MINUS, and
eight operations of MULTIPLY/DIVIDE for the remaining ungroup points per it-
eration. Moreover, the implementation of HSOR considers only (M/8 − 1) points
per iteration, which is much smaller than the other two methods with (M − 1) and
(M/4− 1) respectively.

The reliability of the numerical test using Problems 1 and 2 can be determined
by comparing the exact solutions given by the literature, numerical solutions ob-
tained by the FSFD approximation and numerical solutions obtained by the HSFD
approximation. The computed solutions at time level t = 1.0s for varied points x
are tabulated in Table 4. Figure 2 shows the plotted solutions of Problems 1 and 2.

Figure 2 shows a strong agreement between the plotted exact solutions and
numerical solutions by FSFD and HSFD approximations. Thus, the comparison
among the plotted solutions suggests that the numerical test using Problems 1 and
2 is reliable.

7. Conclusion

This paper proposed a hybrid SOR method based on the HSFD scheme to solve
one-dimensional nonlinear PME. The formulated HSFD approximation is consistent
and accurate in first-order in time and second order in space. The HSFD approx-
imation is also unconditionally stable according to Gerschgorin’s theorem. The
numerical results illustrated that the proposed hybrid SOR method is superior to
the existing methods that used FSFD approximation in total iterations and elapsed
time. The numerical convergence of the proposed hybrid SOR method for various
spatial and temporal step sizes is also presented.
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Problem 1 Problem 2
M [5] [6] HSOR [5] [6] HSOR

ℓtotal 256 1168 610 317 1479 796 404
512 2326 1194 610 2926 1563 796
1024 4578 2310 1194 5784 3055 1563
2048 10401 4826 2310 11514 6080 3055
4096 27312 10673 4826 22449 11996 6080

s 256 2.26 1.14 0.55 1.64 1.06 0.57
512 3.84 2.73 1.73 3.68 2.82 1.37
1024 15.51 8.53 3.54 15.21 10.72 3.69
2048 56.32 34.31 8.64 77.35 50.64 11.82
4096 338.54 137.42 38.03 282.64 152.91 44.49

(a) Total iterations and elapsed time

M
Method Prob. 256 512 1024 2048 4096

[5] 2.9743e-6 2.9754e-6 2.9746e-6 2.9643e-6 2.8339e-6
[6] 1 2.9725e-6 2.9769e-6 2.9772e-6 2.9771e-6 2.9761e-6

HSOR 2.9576e-6 2.9726e-6 2.9764e-6 2.9770e-6 2.9751e-6
[5] 8.3876e-5 8.3876e-5 8.3876e-5 8.3876e-5 8.3876e-5
[6] 2 8.3875e-5 8.3875e-5 8.3876e-5 8.3876e-5 8.3876e-5

HSOR 8.3874e-5 8.3875e-5 8.3876e-5 8.3876e-5 8.3876e-5

(b) Absolute errors

Table 1: Problems 1 and 2 with k = 0.01

k
h 1/10 1/100 1/1000 1/10000

1/256 2.9535e-5 2.9576e-6 2.7805e-7 9.9592e-9
1/512 2.9545e-5 2.9726e-6 2.9297e-7 2.4825e-8
1/1024 2.9538e-5 2.9764e-6 2.9670e-7 2.8554e-8
1/2048 2.9512e-5 2.9770e-6 2.9765e-7 2.9488e-8
1/4096 2.9452e-5 2.9751e-6 2.9787e-7 2.9729e-8

(a) Problem 1

k
h 1/10 1/100 1/1000 1/10000

1/256 8.1407e-4 8.3874e-5 8.4129e-6 8.4155e-7
1/512 8.1408e-4 8.3875e-5 8.4130e-6 8.4155e-7
1/1024 8.1409e-4 8.3876e-5 8.4130e-6 8.4155e-7
1/2048 8.1410e-4 8.3876e-5 8.4130e-6 8.4156e-7
1/4096 8.1423e-4 8.3876e-5 8.4130e-6 8.4156e-7

(b) Problem 2

Table 2: Numerical convergence of HSOR with various h and k

Operations [5] [6] HSOR
PLUS/MINUS 4(M − 1) 6(M/4 − 1) + 5 6(M/8 − 1) + 5

MULTIPLY/DIVIDE 5(M − 1) 10(M/4 − 1) + 8 10(M/8 − 1) + 8

Table 3: Number of arithmetic operations per iteration
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x Exact FSFD HSFD
0 0.288675135 0.288675135 0.288675135

0.0625 0.306717331 0.306749721 0.306749714
0.125 0.324759526 0.324813673 0.324813662
0.1875 0.342801722 0.342870180 0.342870166
0.25 0.360843918 0.360921285 0.360921270

0.3125 0.378886114 0.378968320 0.378968307
0.375 0.396928310 0.397012168 0.397012156
0.4375 0.414970506 0.415053423 0.415053413
0.5 0.433012702 0.433092496 0.433092487

0.5625 0.451054898 0.451129678 0.451129671
0.625 0.469097094 0.469165183 0.469165178
0.6875 0.487139290 0.487199174 0.487199170
0.75 0.505181486 0.505231780 0.505231778

0.8125 0.523223681 0.523263108 0.523263107
0.875 0.541265877 0.541293248 0.541293247
0.9375 0.559308073 0.559322278 0.559322277

1 0.577350269 0.577350269 0.577350269

(a) Problem 1

x Exact FSFD HSFD
0 0.902587365 0.902587365 0.902587365

0.0625 0.886920140 0.886921108 0.886921025
0.125 0.872041440 0.872043136 0.872042992
0.1875 0.857887266 0.857889487 0.857889302
0.25 0.844400662 0.844403238 0.844403027

0.3125 0.831530750 0.831533538 0.831533312
0.375 0.819231921 0.819234798 0.819234569
0.4375 0.807463151 0.807466014 0.807465789
0.5 0.796187429 0.796190189 0.796189976

0.5625 0.785371262 0.785373844 0.785373649
0.625 0.774984258 0.774986600 0.774986426
0.6875 0.764998769 0.765000814 0.765000665
0.75 0.755389575 0.755391278 0.755391156

0.8125 0.746133620 0.746134943 0.746134850
0.875 0.737209781 0.737210690 0.737210627
0.9375 0.728598659 0.728599125 0.728599093

1 0.720282406 0.720282406 0.720282406

(b) Problem 2

Table 4: Computed solutions of Problems 1 and 2 at t = 1.0s

(a) Problem 1

(b) Problem 2

Figure 2: Plotted solutions to Problems 1 and 2
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