• Title/Summary/Keyword: total harmonic distortion (THD)

Search Result 259, Processing Time 0.019 seconds

A Digital Input Class-D Audio Amplifier (디지털 입력 시그마-델타 변조 기반의 D급 오디오 증폭기)

  • Jo, Jun-Gi;Noh, Jin-Ho;Jeong, Tae-Seong;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.6-12
    • /
    • 2010
  • A sigma-delta modulator based class-D audio amplifier is presented. Parallel digital input is serialized to two-bit output by a fourth-order digital sigma-delta noise shaper. The output of the digital sigma-delta noise shaper is applied to a fourth-order analog sigma-delta modulator whose three-level output drives power switches. The pulse density modulated (PDM) output of the power switches is low-pass filtered by an LC-filter. The PDM output of the power switches is fed back to the input of the analog sigma-delta modulator. The first integrator of the analog sigma-delta modulator is a hybrid of continuous-time (CT) and switched-capacitor (SC) integrator. While the sampled input is applied to SC path, the continuous-time feedback signal is applied to CT path to suppress the noise of the PDM output. The class-D audio amplifier is fabricated in a standard $0.13-{\mu}m$ CMOS process and operates for the signal bandwidth from 100-Hz to 20-kHz. With 4-${\Omega}$ load, the maximum output power is 18.3-mW. The total harmonic distortion plus noise and dynamic range are 0.035-% and 80-dB, respectively. The modulator consumes 457-uW from 1.2-V power supply.

A Study on DC Changing Algorithm of the Line-Interactive UPS with Dual Converter Structure (2중 컨버터 구조를 갖는 계통 연계형 UPS의 DC 충전 알고리듬에 관한 연구)

  • Lee, Woo-Cheol;Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.27-34
    • /
    • 2005
  • This paper presents a three phase Line-Interactive uninterruptible power supply(UPS) system with dual converter structure. The three phase UPS system consists of two active power compensator topologies. One is a series active compensator, which works as a voltage source in phase with the source voltage to have the sinusoidal source current and high power factor under the deviation and distortion of the source voltage. The other is a parallel active compensator, which works as a conventional sinusoidal voltage source in phase with the source voltage, providing to the load a regulated and sinusoidal voltage with low total harmonic distortion(THD). This paper presents in the series and parallel active compensator charging method depending on the amplitude of the source voltage. The conventional Line-Interactive UPS system is responsible for the DC charging and output voltage regulation at the same time, but UPS system with dual converter structure, a series active compensator can also charge the DC link. Therefore the charging algorithm using the series and parallel compensator needs to be researched. Therefore, by making the DC link voltage stable it can contribute the stability of series and parallel compensator. The simulation and experimental result are depicted in this paper to show the effect of the proposed algorithm.

A Study to Improve the DC Output Waveforms of AFE Three-Phase PWM Rectifiers (AFE 방식 3상 PWM 정류기의 직류 출력파형 개선에 관한 연구)

  • Jeon, Hyeon-Min;Yoon, Kyoung-Kuk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.739-745
    • /
    • 2017
  • Many studies have been conducted to reduce environmental pollution by ships and reduce fuel consumption. As part of this effort, research on power conversion systems through DC distribution systems that link renewable energy with conventional power grids has been pursued as well. The diode rectifiers currently used include many lower harmonics in the input current of the load and distort supply voltage to lower the power quality of the whole system. This distortion of voltage waveforms causes the malfunctions of generators, load devices and inverter pole switching elements, resulting in a large number of switching losses. In this paper, a controller is presented to improve DC output waveforms, the input Power Factor and the THD of an AFE type PWM rectifier used for PLL. DC output voltage waveforms have been improved, and the input Power Factor can now be matched to the unit power factor. In addition, the THD of the input power supply has been proven by simulation to comply with the requirements of IEEE Std514-2014.

Design of In-Wheel Motor for Automobiles Using Parameter Map (파라미터 맵을 이용한 차량용 인휠 전동기의 설계)

  • Kim, Hae-Joong;Lee, Choong-Sung;Hong, Jung-Pyo
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.92-100
    • /
    • 2015
  • Electric Vehicle (EV) can be categorized by the driving method into in-wheel and in-line types. In-wheel type EV does not have transmission shaft, differential gear and other parts that are used in conventional cars, which simplifies and lightens the structure resulting in higher efficiency. In this paper, design method for in-wheel motor for automobiles using Parameter Map is proposed, and motor with continuous power of 5 kW is designed, built and its performance is verified. To decide the capacity of the in-wheel motor that meets the automobile's requirement, Vehicle Dynamic Simulation considering the total mass of vehicle, gear efficiency, effective radius of tire, slope ratio and others is performed. Through this step, the motor's capacity is decided and initial design to determine the motor shape and size is performed. Next, the motor parameters that meet the requirement is determined using parametric design that uses parametric map. After the motor parameters are decided using parametric map, optimal design to improve THD of back EMF, cogging torque, torque ripple and other factors is performed. The final design was built, and performance analysis and verification of the proposed method is conducted by performing load test.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Robust Double Deadbeat Control of Single-Phase UPS Inverter (단상 UPS 인버터의 강인한 2중 데드비트제어)

  • 박지호;허태원;안인모;이현우;정재륜;우정인
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2001
  • This paper deals with a novel full digital control of the single-phase PWM(Pulse Width Modulation) inviter for UPS(Uninterruptible Power Supp1y). The voltage and current of output filter capacitor as a state variable are the feedback control input. In the proposed scheme a double deadbeat control consisting of minor current control loop and major voltage control loop have been developed In addition, a second order deadbeat currents control which should be exactly equal to its reference in two sampling time without error and overshoot is proposed to remove the influence of the calculation time delay. The load current prediction is achieved to compensate the load disturbance. The simulation and experimental result shows that the proposed system offers an output voltage with THD(Total Harmonic Distortion) less than 5% at a full nonlinear load.

  • PDF

Three Phase Embedded Z-Source Inverter (3상 임베디드 Z-소스 인버터)

  • Oh, Seung-Yeol;Kim, Se-Jin;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.486-494
    • /
    • 2012
  • In this paper, we proposes the three-phase embedded Z-source inverter consisting of the three embedded Z-source converters and it's the output voltage control method. Each embedded Z-source converter can produce the bipolar output capacitor voltages according to duty ratio D such as single-phase PWM inverter. The output AC voltage of the proposed system is obtained as the difference in the output capacitor voltages of each converter, and the L-C output filter is not required. Because the output AC voltage can be stepped up and down, the boost DC converter in the conventional two-stage inverter is unnecessary. To confirm the validity of the proposed system, PSIM simulation and a DSP based experiment were performed under the condition of the input DC voltage 38V, load $100{\Omega}$, and switching frequency 30kHz. Each converter is connected by Y-connection for three-phase loads. In case that the output phase voltage is the same $38V_{peak}$ as the input DC voltage and is the 1.5 times($57V_{peak}$), the simulation and experimental results ; capacitor voltages, output phase voltages, output line voltages, inductor currents, and switch voltages were verified and discussed.

A Simplified Synchronous Reference Frame for Indirect Current Controlled Three-level Inverter-based Shunt Active Power Filters

  • Hoon, Yap;Radzi, Mohd Amran Mohd;Hassan, Mohd Khair;Mailah, Nashiren Farzilah;Wahab, Noor Izzri Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1964-1980
    • /
    • 2016
  • This paper presents a new simplified harmonics extraction algorithm based on the synchronous reference frame (SRF) for an indirect current controlled (ICC) three-level neutral point diode clamped (NPC) inverter-based shunt active power filter (SAPF). The shunt APF is widely accepted as one of the most effective current harmonics mitigation tools due to its superior adaptability in dynamic state conditions. In its controller, the SRF algorithm which is derived based on the direct-quadrature (DQ) theory has played a significant role as a harmonics extraction algorithm due to its simple implementation features. However, it suffers from significant delays due to its dependency on a numerical filter and unnecessary computation workloads. Moreover, the algorithm is mostly implemented for the direct current controlled (DCC) based SAPF which operates based on a non-sinusoidal reference current. This degrades the mitigation performances since the DCC based operation does not possess exact information on the actual source current which suffers from switching ripples problems. Therefore, three major improvements are introduced which include the development of a mathematical based fundamental component identifier to replace the numerical filter, the removal of redundant features, and the generation of a sinusoidal reference current. The proposed algorithm is developed and evaluated in MATLAB / Simulink. A laboratory prototype utilizing a TMS320F28335 digital signal processor (DSP) is also implemented to validate effectiveness of the proposed algorithm. Both simulation and experimental results are presented. They show significant improvements in terms of total harmonic distortion (THD) and dynamic response when compared to a conventional SRF algorithm.

A Study on T5 28W Fluorescent Lamp Ballast Using a Piezoelectric Transformer and One-chip Microcontroller (One Chip Microcontroller와 압전변압기를 이용한 T5 28W 형광등용 전자식 안정기에 관한 연구)

  • 황락훈;류주현;장은성;조문택;안익수;홍재일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2003
  • In this paper, T5 28-watt fluorescent lamp ballast using a piezoelectric transformer is fabricated and its characteristic is investigated. Developed electronic ballast is composed of basic circuits and blocks, such as rectifier part, active power factor corrector part, frequency oscillation part using microcontroller and feedback control, piezoelectric transformer and resonant half bridge inverters. The fabricated ballast uses to variable frequency methode in external so exciting that the frequency of piezoelectric transformer could be generated by voltage control oscillator using microcontroller(AT90S4433). The current of fluorescent lamp is detected by feedback control circuit. The signal of inverter output is received using Piezoelectric transformer, and then its output transmitted to fluorescent lamp. Traditional electromagnetic ballasts operated at 50-60Hz have been suffered from noticeable flicker, high loss, large crest factor and heavy weight. A new electronic ballast is operated at high frequency about 75kHz, and then Input power factor, distortion of total harmonic and lamp current crest factor are measured about 0.9!35, 12H and 1.5, respectively Accordingly, the traditional ballast is by fabricated electronic ballast using piezoelectric transformer and voltage control oscillator because of its lighter weight, high efficiency, economic merit and saving energy.