• Title/Summary/Keyword: torsional moment of inertia

Search Result 35, Processing Time 0.019 seconds

The Study on the Added Moment of Inertia of Two Dimensional Cylinder induced by the Torsional Vibration coupled with the Flexural Vibration (자유수면(自由水面)에서의 비틀림 수평(水平)굽힘의 연성진동(連成振動)을 하는 선체단면형(船體斷面形)의 이차원적(二次元的) 부가관성(附加慣性) Moment에 관(關)한 연구(硏究))

  • S.S.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.7 no.2
    • /
    • pp.3-18
    • /
    • 1970
  • An investigation was made for the added mass moment of inertia induced by the rotational motion of the cylinder with hull section on water in order to obtain the information to estimate the natural frequency of the torsional vibration of ships. The special consideration to the effect of the draught upon the added mass moment of inertia is taken into account in the study. In this paper, the general expression for the added mass coefficients of moment of inertia of arbitary two dimensional forms induced by the torsional vibration, was derived by the author. Hence, the coefficients for these forms are represented as functions of parameters, the section area coefficient and draft beam ratio, from which the added mass coefficients for arbitrary forms can be obtained. The result was shown in a chart for estimation of the added mass moment of inertia induced by the torsional vibration, as first trial, for the convenience of practical use.

  • PDF

A study on the viscous torsional vibration damper in a high speed diesel engine (고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

A Study on the Optimization of the Torsional Vibration Using DFFSS Method for DI Diesel Engine (직접분사방식 디젤엔진의 6시그마 기법을 적용한 비틀림 최적화에 대한 연구)

  • Kim, Jang-Su;Koh, Jang-Joo;Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • Due to a low stiffness of cranktrain and a failure experience from a history within short development time, a viscous torsional vibration damper was applied in order to reduce the torsional vibration and keep the high reliability for the durability of cranktrain system in the direct injection diesel engine. As an improvement of the crankshaft stiffness by increasing the diameter of main and pin journal, a rubber type damper could be considered. In this study, the control factors of rubber damper, the moment of inertia ring, stiffness of damper and damping coefficient of ring, were investigated by DFSS method through the analysis work and the measurement in the real engine condition.

A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System (고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험)

  • Yang, B.S.;Jeong, T.Y.;Kim, K.D.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF

Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM

  • Eratli, Nihal;Yilmaz, Murat;Darilmaz, Kutlu;Omurtag, Mehmet H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.221-238
    • /
    • 2016
  • One of the objectives of this study is to implement the direct calculation of the torsional moment of inertia for non-circular cross-sections, which is based on the St. Venant torsion formulation and the finite element method. Recently the proposed method provides a unique calculation of the torsional rigidity of simply and multiply connected cross-sections. Next, free vibration analyses of cylindrical and non-cylindrical helices with non-circular cross-sections are solved by a curved two-nodded mixed finite element based on the Timoshenko beam theory. Some thin-thick closed or open sections are handled and the natural frequencies of cylindrical and non-cylindrical helices are compared with the literature and the commercial finite element program SAP2000.

A Note on the Two-Dimensional Added Mass Moment of Inertia in Torsional Vibration of Cylinders of Curvilinear-Element Sections with Chines. (배골형단면(背骨型斷面) 주상체(柱狀體)의 자유수면(自由水面)하에서의 비틂진동(振動)에 대(對)한 이차원적(二次元的) 부가관성(附加慣性)모우먼트의 계산(計算))

  • Key-P.,Rhee;Y.S.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.11 no.2
    • /
    • pp.41-44
    • /
    • 1974
  • A calculation of the two dimensional added mass moment of inertia for the Kim's chine form sections is made with a special consideration of a location of a axis of rotation. The results are compared with those of Lewis form section equivalent to the above chine form sections calculated by Kumai.

  • PDF

Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System (추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계)

  • Park, Sang-Yun;Han, Kuk Hyun;Park, Ju-Min;Kwon, Sung Hun;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도분석)

  • Kim, B;Jung, W;Baek, H;Kang, D;Chung, J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.492-497
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

  • PDF

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석)

  • Kim, Bohyeong;Jung, W.;Baek, H.;Kang, D.;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Moment Gradient Factor for Lateral Torsional Buckling Strength of Monosymmetric Stepped I-beam Subjected to Uniform Moment

  • Gelera, Kathleen Mae;Park, Jong-Sup
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.7-13
    • /
    • 2010
  • Stepped I-beams having increased moment of inertia at one end (singly stepped beam) or both ends (doubly stepped beams) can often be seen in construction of bridges due to material economy and easy fabrication of the section. This paper presents the results of the parametric study of lateral torsional buckling of monosymmetric stepped I-beams with constant depth subjected to uniform moment. Design recommendations were made based on the finite element results of the models having different combinations of monosymmetric ratio, stepped length ratio, flange thickness ratio and flange width ratio. The proposed approximation is acceptable based on the parameters given having mostly conservative results. The proposed equation can be further used to extend the study to different loading conditions.