• Title/Summary/Keyword: torque sensing

Search Result 84, Processing Time 0.027 seconds

Development of Torque Sensor for Measurement of Knee Joint Torque of Walking Assist Robot in Stroke Patients (뇌졸중환자 보행보조로봇의 무릎관절 토크측정을 위한 토크센서 개발)

  • Park, Jeong-Hyeon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • In this paper, a torque sensor is designed and fabricated to measure the knee joint torque of a walking assist robot for stroke patients. The torque sensor sensing part was modeled on the link of the part connected to the knee joint motor. The torque capacity of the knee joint was calculated by simulation and the size of the torque sensor sensing part was designed using the finite element method. The torque sensor was fabricated by attaching a strain gauge to the sensing part. Characteristic experiments were conducted to characterize the torque sensor, and the torque sensor was calibrated to utilize it for the control of the walking assist robot. As a result of the characteristics test, the reproducibility error and the nonlinearity error of the torque sensor were 0.03% and 0.04%, respectively. Therefore, it is considered that the developed torque sensor can be used to measure the torque applied to the knee joint when walking on a walking assist robot.

Design of Precise Torque Controller for Electric Bicycle with Cadence Sensing Drive System (Cadence Sensing 방식의 전기자전거를 위한 정밀 토크제어 컨트롤러 설계)

  • Lee, Juyeon;Kim, Daesoon;Lee, Jongha;Song, Jeho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.134-139
    • /
    • 2017
  • In this paper, a novel torque control scheme is proposed and implemented to handle the torque level of ebike precisely. By adopting moving average filters to eliminate throttle noise, ebike driver could control throttle level on wide span of 256 steps. Designed controller is plugged into ebike and tested to demonstrate it's linear control incomparable to conventional cadence sensing controller.

자기장을 이용한 비접촉 토크센서설계

  • Song, Zeng-Lu;Cho, Chong-Du;Pan, Qiang;Kim, Jae-Min;Kim, Woong-Ji
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1087-1090
    • /
    • 2007
  • A wireless magnetic torque sensor is utilized to measure the torque generated in the rotating shaft in magnetic field without connecting to the shaft by any wire. In this study, a new wireless magnetic torque sensor was introduced. The structure of the sensor was explained detailed as well as its operation principle. Resulting from the torque measurement experiment results, the sensor was proven to measure the generated torque effectively. Compared with traditional contact torque sensor, the wireless one has low cost and good environment adaptation ability. Moreover, the intractable wrapping wires around the shaft are removed in this design. Hence the wireless torque sensor may be expected as a possible sensing device for many applications, such as the electric assisting rotation system in automobiles, the torque sensing system in motors, the arm rotation system in robotics and so on.

  • PDF

Current trends in force/torque sensing

  • Morris, Keith-A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.606-608
    • /
    • 1989
  • Force/torque sensors are now providing widespread practical solutions to manufacturing problems, particularly in the area of automated assembly. The current state of the industry is discussed, including the evolution of transducer and controller design, and the trend of robot manufacturers to integrate force/torque sensors into their robot systems thereby greatly improving cycle time and simplifying the application development task for the end-user. Current and future application areas are discussed as well as the benefits of force/torque sensing.

  • PDF

Signal Processing and Performance of a Six-Axis Force-Torque Sensor Using Strain Gauges (스트레인게이지 응용 6축 힘-토크 센서의 신호처리와 성능)

  • Yi, Jae-Ho;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.146-151
    • /
    • 2001
  • The importance of sensing the force and torque with arbitrary direction and magnitude is becoming more crucial for robotic applications and manufacturing automations. Recently, several designs of a multi-axis force-torque sensor have been tried to sense this force and torque. This paper deals mainly with the signal processing of a six-axis force-torque sensor using cross-shaped elastic structures with circular holes. In this paper, we show principle of sensing force and torque, the signal processing methodology, and efficient methods of seeking strain gage positions in the sensor structure. The validity of the proposed method is shown via experiments.

  • PDF

Reduction of Torque Ripple due to Current-Sensing Errors in Inverter-Fed AC Motor Systems (인버터의 전류측정 오차에 기인하는 교류전동기의 토크리플 저감)

  • 윤덕용;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.280-286
    • /
    • 1998
  • This paper proposes a novel method to reduce the torque ripple due to the non-ideality of the current sensing parts in vector-controlled inverter-fed AC motor drive systems. For PMSM(Permanent Magnet Synchronous Motor), motor output torque equations are derived in terms of their offset voltages and different voltage transducing gains. And the effects of phase current errors on motor torque are analyzed for both salient PMSM and non-salient PMSM. The proposed method can eliminate the torque ripple by nulling the offset voltages and setting the voltage transducing gains to the same value. To verify the proposed method, digital simulations are carried out for non-salient PMSM.

  • PDF

Brushless DC Motor Electromagnetic Torque Estimation with Single-Phase Current Sensing

  • Cham, Chin-Long;Samad, Zahurin Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.866-872
    • /
    • 2014
  • The purpose of this paper was to find an effective method for measuring electromagnetic torque produced by a brushless DC motor with single-phase current sensing in real-time. A torque equation is derived from the theory of brushless DC motor. This equation is then validated experimentally with a motor dynamometer. A computer algorithm is also proposed to implement the electromagnetic torque estimation equation in real-time. Electromagnetic torque is a linear function of phase current. Estimating the electromagnetic torque in real-time using single-phase current is not appropriate with existing equations, however, because of the rectangular alternating-pulse nature of the excitation current. With some mathematical manipulation to the existing equations, the equation derived in this paper overcame this limitation. The equation developed is simple and so it is computationally efficient, and it takes only motor torque constant and single-phase current to evaluate the electromagnetic torque; no other parameters such as winding resistances, inductances are needed. The equation derived is limited to the three-phase brushless DC motor. It can, however, easily be extended to the multiphase brushless DC motor with the technique described in this paper.

Development of Torque Sensor Using the Structural Characteristic of Planetary Gear and Hall Effect Sensor

  • Jang, In-Hun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2058-2062
    • /
    • 2005
  • This article describes the useful way to measure the torque and RPM of the geared motor. For this, we have made the planetary geared reduction motor including the torque sensor unit which consists of hall effects sensor and permanent magnet. Our monitoring system displays the sensing values (torque, rpm) and the calculated value (power) and it also has the network capability using the Bluetooth protocol. We will show that our solution is much more inexpensive and simple method to measure torque and rpm than before.

  • PDF

Implementation of Web-based Force Management System (웹기반 힘관리시스템의 구현)

  • Park, Chol-Ho;Kang, Chul-Goo;Nam, Hyun-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.835-839
    • /
    • 2004
  • For factory automation using force/torque control, we need a networked-force management system as well as good force sensing and force generation. In this paper, we present a web-based force management system including 6-axis force/torque sensing system. Performance of the force-torque sensor is affected significantly by analog noise that is included in a sensor signal, and the noise should be reduced appropriately to obtain an adequate performance of the sensor. Moreover, the sensor itself should be convenient to install to a real application system. It should be compact in size and also easy to wire in real situation. In this viewpoint, we developed usb-based compact sensor system which is well communicated using web between two computers that exist far away. Software is programmed using LabVIEW and CCS-C. PIC microcontrollers are used for implementing a compact hardware. The proposed system is verified through experimental works.

  • PDF